Skip to main content

Multiscale Modeling of Nanoindentation: From Atomistic to Continuum Models

  • Chapter
  • First Online:

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 203))

Abstract

Nanoindentation revealed a number of effects, like pop-in behavior or indentation size effects, that are very different from the classical mechanical behavior of bulk materials and that have therefore sparked a lot of research activities. In this contribution a multiscale approach is followed to understand the mechanisms behind this peculiar material behavior during nanoindentation. Atomistic simulations reveal the mechanisms of dislocation nucleation and multiplication during the very start of plastic deformation. From mesoscale dislocation density based models we gain advanced insight into how plastic zones develop and spread through materials with heterogeneous dislocation microstructures. Crystal plasticity models on the macroscale, finally, are able to reproduce load-indentation curves and remaining imprint topologies in a way that is directly comparable to experimental results and, thus, allows for the determination of true material properties by inverse methods. The complex interplay of the deformation mechanisms occurring on different length scales is described and the necessity to introduce the knowledge about fundamental deformation mechanisms into models on higher length scales is highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Abaqus Software is a product of Dassault Systemes Simulia Corp., Providence, RI, USA.

References

  • Ackland GJ, Jones AP (2006) Applications of local crystal structure measures in experiment and simulation. Phys Rev B 73(5):054104

    Article  Google Scholar 

  • Alcalá J, Barone AC, Anglada M (2000) The influence of plastic hardening on surface deformation modes around Vickers and spherical indents. Acta Mater 48(13):3451–3464

    Article  Google Scholar 

  • Arsenlis A, Parks DM (1999) Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater 47(5):1597–1611

    Article  Google Scholar 

  • Atkinson M (1995) Further analysis of the size effect in indentation hardness tests of some metals. J Mater Res 10(11):2908–2915

    Article  Google Scholar 

  • Begau C (2008) Metamodelle zur Optimierung der Pressnahtlage bei Verbundstrangpresssimulationen.Tech. Rep. Algorithm Engineering Reports TR08-2-008, Fakultät für Informatik, TU Dortmund, Germany

    Google Scholar 

  • Begau C, Hartmaier A, George EP, Pharr GM (2011) Atomistic processes of dislocation generation and plastic deformation during nanoindentation. Acta Mater 59:934–942

    Article  Google Scholar 

  • Begau C, Hua J, Hartmaier A (2012) A novel approach to study dislocation density tensors and lattice rotation patterns in atomistic simulations. J Mech Phys Solids 60(4):711–722

    Article  Google Scholar 

  • Bei H, Gao YF, Shim S, George EP, Pharr GM (2008) Strength differences arising from homogeneous versus heterogeneous dislocation nucleation. Phys Rev Lett 77(6):060103

    Google Scholar 

  • Bei H, George EP, Hay JL, Pharr GM (2005) Influence of indenter tip geometry on elastic deformation during nanoindentation. Phys Rev Lett 95(4):045501

    Article  Google Scholar 

  • Cheng Y-T, Cheng C-M (1998) Scaling approach to conical indentation in elastic-plastic solids with work hardening. J Appl Phys 84(3):1284–1291

    Article  Google Scholar 

  • Cordero NM, Gaubert A, Forest S, Busso EP, Gallerneau F, Kruch S (2010) Size effects in generalised continuum crystal plasticity for two-phase laminates. J Mech Phys Solids 58:1963–1994

    Article  MathSciNet  MATH  Google Scholar 

  • De Guzman MS, Neubauer G, Flinn P, Nix WD (1993) The Role of Indentation Depth on the Measured Hardness of Materials. In: MRS proceedings, vol 308. Cambridge University Press, 1993

    Google Scholar 

  • Demir E, Raabe D, Zaafarani N, Zaefferer S (2009) Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Mater 57:559–569

    Article  Google Scholar 

  • Devincre B (1995) Three dimensional stress field expressions for straight dislocation segments. Solid State Commun 93:875–878

    Article  Google Scholar 

  • Durst K, Backes B, Göken M (2005) Indentation size effect in metallic materials: correcting for the size of the plastic zone. Scripta Mater 52(11):1093–1097

    Article  Google Scholar 

  • Eidel B, Gruttmann F (2007) Squaring the circle—A curious phenomenon of fcc single crystals in spherical microindentation. Comput Mater Sci 39(1):172–178

    Article  Google Scholar 

  • Engels P, Ma A, Hartmaier A (2012) Continuum simulation of the evolution of dislocation densities during nanoindentation. Int J Plast 38:159–169

    Article  Google Scholar 

  • Evans AG, Hutchinson JW (2009) A critical assessment of theories of strain gradient plasticity. Acta Mater 57:1675–1688

    Article  Google Scholar 

  • Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487

    Article  Google Scholar 

  • Forest S, Barbe F, Cailletaud G (2000) Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multiphase materials. Int J Solids Struct 37:7105–7126

    Article  MathSciNet  MATH  Google Scholar 

  • Gao H, Huang Y, Nix WD, Hutchinson JW (1999) Mechanism-based strain gradient plasticity—I. theory. J Mech Phys Solid 47(6):1239–1263

    Article  MathSciNet  MATH  Google Scholar 

  • Geers MGD, Brekelmans WAM, Bayley CJ (2007) Second-order crystal plasticity: internal stress effects and cyclic loading. Modell Simul Mater Sci Eng 15:133–145

    Article  Google Scholar 

  • Gottstein G (2004) Physical Foundations of Materials Science. Springer, Berlin

    Google Scholar 

  • Gurtin ME (2002) A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J Mech Phys Solids 50:5–32

    Article  MathSciNet  MATH  Google Scholar 

  • Han CS, Ma A, Roters F, Raabe D (2007) A Finite Element approach with patch projection for strain gradient plasticity formulations. Int J Plast 23:690–710

    Article  MATH  Google Scholar 

  • Hayashi I, Sato M, Kuroda M (2011) Strain hardening in bent copper foils. J Mech Phys Solids 59:1731–1751

    Article  Google Scholar 

  • Hirth JP, Lothe J (1982) Theory of dislocations. Wiley, London

    Google Scholar 

  • Hua J, Hartmaier A (2010) Determining Burgers vectors and geometrically necessary dislocation densities from atomistic data. Modell Simul Mater Sci Eng 18(045007):1–11

    Google Scholar 

  • Huang Y, Zhang F, Hwang KC, Nix WD, Pharr GM, Feng G (2006) A model of size effects in nano-indentation. J Mech Phys Solid 54:1668–1686

    Article  MATH  Google Scholar 

  • Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Global Optim 13(4):455–492

    Article  MathSciNet  MATH  Google Scholar 

  • Kalidindi SR, Bronkhorst CA, Anand L (1992) Crystallographic texture evolution in bulk deformation processing of FCC metals. J Mech Phys Solid 40(3):537–569

    Google Scholar 

  • Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58:11085–11088

    Article  Google Scholar 

  • Knap J, Ortiz M (2003) Effect of indenter-radius size on Au(001) nanoindentation. Phys Rev Lett 90:226102

    Google Scholar 

  • Kraft O, Gruber PA, Moenig R, Weygand D (2010) Plasticity in confined dimensions. In: Clarke DR, Ruhle M, Zok F (eds) Annual review of materials research, vol 40, Annual Reviews, pp 293–317

    Google Scholar 

  • Lee EH (1969) Elastic-Plastic Deformation at Finite Strains. J Appl Mech 36(1):1–6

    Article  MATH  Google Scholar 

  • Liang HY, Woo CH, Huang H, Ngan AHW, Yu TX (2003) Dislocation nucleation in the initial stage during nanoindentation. Phil Mag 83(31–34):3609–3622

    Article  Google Scholar 

  • Lloyd DJ (1994) Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev 39(1):1–23

    Article  Google Scholar 

  • Lodes MA, Hartmaier A, Göken M, Durst K (2011) Influence of dislocation density on the pop-in behavior and indentation size effect in CaF2 single crystals: experiments and molecular dynamics simulations. Acta Mater 59:4264–4273

    Article  Google Scholar 

  • Ma A, Roters F, Raabe D (2006) A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Mater 54:2169–2179

    Article  Google Scholar 

  • Ma Q, Clarke DR (1995) Size dependent hardness of silver single crystals. J Mater Res 10(04):853–863

    Article  Google Scholar 

  • McElhaney KW, Vlassak JJ, Nix WD (1998) Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J Mater Res 13(05):1300–1306

    Article  Google Scholar 

  • Mecking H, Kocks UF (1981) Kinetics of flow and strain hardening. Acta Metall 29:1865–1875

    Article  Google Scholar 

  • Miller R, Rodney D (2008) On the nonlocal nature of dislocation nucleation during nanoindentation. J Mech Phys Solids 56:1203–1223

    Article  MATH  Google Scholar 

  • Minor A, Asif SAS, Shan Z, Stach E, Cyrankowski E, Wyrobek T, Warren O (2006) A new view of the onset of plasticity during the nanoindentation of aluminium. Nat Mater 5:697–702

    Article  Google Scholar 

  • Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD (2001) Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys Rev B 63(22):224106

    Article  Google Scholar 

  • Morris JR, Bei H, Pharr GM, George EP (2011) Size effects and stochastic behavior of nanoindentation pop in. Phys Rev Lett 106(16):165502

    Google Scholar 

  • Mughrabi H (2007) On the current understanding of strain gradient plasticity. Mater Sci Eng, A 387–389:209–213

    Google Scholar 

  • Nix W, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solid 46:411–425

    Google Scholar 

  • Nix WD (1989) Mechanical properties of thin films. Metall Trans A 20:2217–2245

    Article  Google Scholar 

  • Nye JF (1953) Some geometrical relations in dislocated crystals. Acta Metall 1:153–162

    Article  Google Scholar 

  • Ohashi T (2005) Crystal plasticity analysis of dislocation emission from micro voids. Int J Plast 21:2071–2088

    Article  MATH  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  Google Scholar 

  • Poole WJ, Ashby MF, Fleck NA (1996) Micro-hardness of annealed and work-hardened copper polycrystals. Scripta Mater 34(4):559–564

    Article  Google Scholar 

  • Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58:1152–1211

    Article  Google Scholar 

  • Roters F, Raabe D, Gottstein G (2000) Work hardening in heterogeneous alloys-a microstructural approach based on three internal state variables. Acta Mater 48(17):4181–4189

    Article  Google Scholar 

  • Roters F, Wang Y, Kuo JC, Raabe D (2004) Comparison of single crystal simple shear deformation experiments with crystal plasticity finite element simulations. Adv Eng Mater 6(8):653–656

    Article  Google Scholar 

  • Schmaling B, Hartmaier A (2012) Determination of plastic material properties by analysis of residual imprint geometry of indentation. J Mater Res 27:2167–2177

    Article  Google Scholar 

  • Shim S, Bei H, Pharr GM, George EP (2008) A different type of indentation size effect. Scripta Mater 59(10):1095–1098

    Article  Google Scholar 

  • Shrotriya P, Allameh SM, Lou J, Buchheit T, Soboyejo WO (2003) On the measurement of the plasticity length scale parameter in LIGA nickel foils. Mech Mater 35(3–6):233–243

    Article  Google Scholar 

  • Stadler J, Mikulla R, Trebin HR (1997) IMD: a software package for molecular dynamics studies on parallel computers. Int J Mod Phys C 8(5):1131–1140

    Article  Google Scholar 

  • Stelmashenko NA, Walls MG, Brown LM, Milman YV (1993) Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall Mater 41(10):2855–2865

    Article  Google Scholar 

  • Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46(14):5109–5115

    Article  Google Scholar 

  • Subramaniyan AK, Sun CT (2008) Continuum interpretation of virial stress in molecular simulations. International J Solids Struct 45(14-15):4340–4346

    Google Scholar 

  • Suresh S, Nieh TG, Choi BW (1999) Nano-indentation of copper thin films on silicon substrates.Scripta Mater 41:951–957

    Google Scholar 

  • Suzuki K, Matsuki Y, Masaki K, Sato M, Kuroda M (2009) Tensile and microbend tests of pure aluminum foils with different thicknesses. Mater Sci Eng, A 513–514:77–82

    Google Scholar 

  • Swadener JG, George EP, Pharr GM (2002) The correlation of the indentation size effect measured with indenters of various shape. J Mech Phys Solids 50:681–694

    Article  MATH  Google Scholar 

  • Tymiak NI, Kramer DE, Bahr DF, Wyrobek TJ, Gerberich WW (2001) Plastic strain and strain gradients at very small indentation depths. Acta Mater 49(6):1021–1034

    Article  Google Scholar 

  • Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305:986–989

    Article  Google Scholar 

  • Vliet KJV, Li J, Zhu T, Yip S, Suresh S (2003) Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys Rev B 76:104105

    Google Scholar 

  • Voronoi G (1908) Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik 1908(134):198–287

    Google Scholar 

  • Weertman J (2002) Anomalous work hardening, non-redundant screw dislocations in a circular bar deformed in torsion, and non-redundant edge dislocations in a bent foil. Acta Mater 50:673–689

    Article  Google Scholar 

  • Wit RD (1967) Some Relations for Straight Dislocations. Phys Status Solidi (b) 20:567–573

    Google Scholar 

  • Zagrebelny AV, Lilleodden ET, Gerberich WW, Carter CB (1999) Indentation of silicate-glass films on Al2O3 substrates. J Am Ceram Soc 82(7):1803–1808

    Article  Google Scholar 

  • Zambaldi C, Yang Y, Bieler TR, Raabe D (2012) Orientation informed nanoindentation of alpha-titanium: indentation pileup in hexagonal metals deforming by prismatic slip. J Mater Res 27(01):356–367

    Article  Google Scholar 

  • Zhu T, Li J, Van Vliet KJ, Ogata S, Yip S, Suresh S (2004) Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper. J Mech Phys Solids 52(3):691–724

    Article  MATH  Google Scholar 

  • Ziegenhain G, Urbassek H, Hartmaier A (2010) Influence of crystal anisotropy on elastic deformation and onset of plasticity in nanoindentation: a simulational study. J Appl Phys 107:061807

    Article  Google Scholar 

  • Zimmerman JA, Kelchner CL, Klein PA, Hamilton JC, Foiles SM (2001) Surface step effects on nanoindentation. Phys Rev Lett 87:165507

    Article  Google Scholar 

  • Zimmerman JA, Webb Iii EB, Hoyt JJ, Jones RE, Klein PA, Bammann DJ (2004) Calculation of stress in atomistic simulation. Modell Simul Mater Sci Eng 12(4):S319–S319

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support through ThyssenKrupp AG, Bayer MaterialScience AG, Salzgitter Mannesmann Forschung GmbH, Robert Bosch GmbH, Benteler Stahl/Rohr GmbH, Bayer Technology Services GmbH and the state of North-Rhine Westphalia as well as the European Commission in the framework of the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hartmaier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Engels, P.S., Begau, C., Gupta, S., Schmaling, B., Ma, A., Hartmaier, A. (2014). Multiscale Modeling of Nanoindentation: From Atomistic to Continuum Models. In: Tiwari, A. (eds) Nanomechanical Analysis of High Performance Materials. Solid Mechanics and Its Applications, vol 203. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6919-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6919-9_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6918-2

  • Online ISBN: 978-94-007-6919-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics