Skip to main content

Haptic Modality in Virtual Reality

  • Chapter
  • First Online:
Virtual Reality Technology and Applications

Abstract

The chapter covers topics relevant for the design of haptic interfaces and their use in virtual reality applications. It provides knowledge required for understanding complex force feedback approaches and introduces general issues that must be considered for designing efficient and safe haptic interfaces. Human haptics, mathematical models of virtual environment, collision detection, force rendering and control of haptic devices are the main theoretical topics covered in this chapter, which concludes with a summary of different haptic display technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Minsky M, Ouh-Young M, Steele OFB, Behensky M (1990) Feeling and seeing: issues in force display. Comput Graphics 24:235–443 (ACM Press)

    Google Scholar 

  2. Barfield W, Furness TA (1995) Virtual environments and advanced interface design. Oxford University Press, New York

    Google Scholar 

  3. Duke D, Puerta A (1999) Design. Specifications and verification of interactive systems. Springer, Wien

    Google Scholar 

  4. Mihelj M, Podobnik J (2012) Haptics for Virtual Reality and Teleoperation. Springer

    Google Scholar 

  5. Jones LA (2000) Kinesthetic sensing. Human and machine haptics. MIT Press, Cambridge

    Google Scholar 

  6. Biggs SJ, Srinivasan MA (2002) Handbook of virtual environments, chap haptic interfaces. LA Earlbaum, New York

    Google Scholar 

  7. Lederman SJ, Klatzky R (2009) Haptic perception: a tutorial. Attention Percept Psychophysics 71:1439–1459

    Google Scholar 

  8. Barraff D (1994) Fast contact force computation for nonpenetrating rigid bodies. Computer Graphics Proceedings, SIGGRAPH, Orlando, pp 23–34

    Google Scholar 

  9. Gottschalk S (1997) Collision detection techniques for 3D models. Cps 243 term paper, University of North Carolina

    Google Scholar 

  10. Lin M, Gottschalk S (1998) Collision detection between geometric models: a survey. In: Proceedings of IMA conference on mathematics on surfaces, pp 11–19

    Google Scholar 

  11. Adachi Y, Kumano T, Ogino K (1995) Intermediate representation for stiff virtual objects. In: Proceedings of virtual reality annual international symposium, pp 203–210

    Google Scholar 

  12. Konig H, Strohotte T (2002) Fast collision detection for haptic displays using polygonal models. In: Proceedings of the conference on simulation and visualization, Ghent, pp 289–300

    Google Scholar 

  13. Okamura AM, Smaby N, Cutkosky MR (2000) An overview of dexterous manipulation. In: Proceedings of the IEEE international conference on robotics and automation, pp 255–262

    Google Scholar 

  14. Salisbury JK, Brock D, Massie T, Swarup N, Zilles C (1995) Haptic rendering: programming touch interaction with virtual objects. Symposium on interactive 3D graphics, Monterey, USA, pp 123–130

    Google Scholar 

  15. Basdogan C, Srinivasan MA (2001) Handbook of virtual environments: design, implementation, and applications, chap. haptic rendering in virtual environments, Lawrence Erlbaum Associates, New Jersey, pp 117–134

    Google Scholar 

  16. Kazerooni H, Her MG (1994) The dynamics and control of a haptic interface device. IEEE Trans Rob Autom 20:453–464

    Article  Google Scholar 

  17. Hogan N (1989) Controlling impedance at the man/machine interface. In: Proceedings of the IEEE international conference on robotics and automation, pp 1626–1631

    Google Scholar 

  18. Carignan CR, Cleary KR (2000) Closed-loop force control for haptic simulation of virtual environments. Haptics-e 1(2):1–14

    Google Scholar 

  19. Hannaford B, Venema S (1995) Virtual environments and advanced interface design, chap. Kinesthetic displays for remote and virtual environments, Oxford University Press Inc., New York, pp 415–436

    Google Scholar 

  20. Youngblut C, Johnson RE, Nash SH, Wienclaw RA, Will CA (1996) Review of virtual environment interface technology. Ida paper p-3786, Institute for Defense Analysis, Virginia, USA

    Google Scholar 

  21. Burdea G (1996) Force and touch feedback for virtual reality. Wiley, New York

    Google Scholar 

  22. Hollerbach JM (2000) Some current issues in haptics research. In: Proceedings of the IEEE international conference on robotics and automation, pp 757–762

    Google Scholar 

  23. Bar-Cohen Y (1999) Topics on nondestructive evaluation series, vol 4: automation, miniature robotics and sensors for non-destructive testing and, evaluation, The American Society for Nondestructive Testing, Inc

    Google Scholar 

  24. Hayward V, Astley OR (1996) Performance measures for haptic interfaces. Robotics Research, pp 195–207

    Google Scholar 

  25. Richard C, Okamura A, Cutkosky MC (1997) Getting a feel for dynamics: using haptic interface kits for teaching dynamics and control. In: Proceedings of the ASME IMECE 6th annual symposium on haptic interfaces, Dallas, TX, USA, pp 15–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matjaž Mihelj .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mihelj, M., Novak, D., Begus, S. (2014). Haptic Modality in Virtual Reality . In: Virtual Reality Technology and Applications. Intelligent Systems, Control and Automation: Science and Engineering, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6910-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6910-6_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6909-0

  • Online ISBN: 978-94-007-6910-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics