Skip to main content

Acoustic Modality in Virtual Reality

  • Chapter
  • First Online:
  • 7235 Accesses

Part of the book series: Intelligent Systems, Control and Automation: Science and Engineering ((ISCA,volume 68))

Abstract

Sound enhances the sense of realism in the virtual world, gives additional information about the environment, for example engine speed in flight simulators. By means of sonification the information is presented in the form of an abstract sound. Unlike vision, it is not limited to the direction of view, but is present regardless of head orientation. It is also not possible to temporarily disable your hearing the way it is possible to temporarily disable vision by closing your eyes. Temporal and spatial characteristics of sound differ from those of visual perception. Although what we see exists in space and time, vision stresses the spatial component of the environment. In contrast, hearing stresses the temporal component of the environment. In the following sections, the process of creating a virtual acoustic environment will be shortly presented with basic acoustic principles, human audio perception and recording techniques.

This is a preview of subscription content, log in via an institution.

References

  1. Savioja L, Huopaniemi J, Lokki T, Vaananen R (September 1999) Creating interactive virtual acoustic environments. J Audio Eng Soc 47(9):675–705

    Google Scholar 

  2. Kleiner M, Dalenback BI, Svensson P (1993) J Audio Eng Soc 41(11):861–875

    Google Scholar 

  3. Lokki T, Savioja L, Väänänen R, Huopaniemi J, Takala T (2002) Creating interactive virtual auditory environments. IEEE Comput Graph Appl 22(4):49–57

    Article  Google Scholar 

  4. Andre C, Embrechts JJ, Verly JG (2010) Adding 3d sound to 3d cinema: identification and evaluation of different reproduction techniques. In: International conference on audio language and image processing (ICALIP), pp 130–137

    Google Scholar 

  5. Kapralos B, Jenkin MR, Milios E (2008) Virtual audio systems. Presence Teleoper Virtual Environ 17(6):527–549

    Article  Google Scholar 

  6. Choueiri E (2010) Optimal crosstalk cancellation for binaural audio with two loudspeakers.Posted on the 3D3A Lab’s website

    Google Scholar 

  7. Seto WW (1971) Theory and applications of acoustics. Mcgraw-Hill, New York

    Google Scholar 

  8. Jeglič A, Fefer D (1991) Osnove akustike. Akademska založba Ljubljana

    Google Scholar 

  9. Kladnik R (1966) Fizika za slušatelje tehniških fakultet, vol 1. Fakulteta za arhitekturo, gradbeništvo in geodezijo

    Google Scholar 

  10. Fletcher H, Munson WA (1933) Loudness, its definition, measurement and calculation. J Acoust Soc Am 5(2):82–108

    Article  Google Scholar 

  11. Churcher BG, King AJ (1937) The performance of noise meters in terms of the primary standard. J Inst Electr Eng 81:57–90

    Google Scholar 

  12. Robinson DW, Dadson RS (1956) A re-determination of the equal-loudness relations for pure tones. Br J Appl Phys 7:166–181

    Article  Google Scholar 

  13. Howard DM, Angus J (2001) Acoustics and Psychoacoustics, 2nd edn. Oxford

    Google Scholar 

  14. Listen HRTF database: http://recherche.ircam.fr/equipes/salles/listen/

    Google Scholar 

  15. Ivančević B (2007) Elektroakustika, 3rd edn. Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva. ISBN 978-953-184-118-4

    Google Scholar 

  16. Sušnik R (2006) Postopki kodiranja elevacije izvorov zvoka v akustični sliki prostora. Ph.D. thesis, Fakulteta za elektrotehniko, Ljubljana

    Google Scholar 

  17. Beguš S (2001) Slepo ločevanje akustičnih izvorov, diplomsko delo

    Google Scholar 

  18. Lee TW (1998) Independent component analysis: theory and applications. Kluwer Academic Publishers, Boston

    MATH  Google Scholar 

  19. Fefer D, Jeglič A (1992) Elektroakustika. Fakulteta za elektrotehniko in računalništvo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matjaž Mihelj .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mihelj, M., Novak, D., Begus, S. (2014). Acoustic Modality in Virtual Reality. In: Virtual Reality Technology and Applications. Intelligent Systems, Control and Automation: Science and Engineering, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6910-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6910-6_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6909-0

  • Online ISBN: 978-94-007-6910-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics