Skip to main content

Peroxisome Proliferator-Activated Receptor-α Signaling in Hepatocarcinogenesis

  • Chapter
  • First Online:
Book cover Peroxisomes and their Key Role in Cellular Signaling and Metabolism

Part of the book series: Subcellular Biochemistry ((SCBI,volume 69))

Abstract

Peroxisomes are subcellular organelles that are found in the cytoplasm of most animal cells. They perform diverse metabolic functions, including H2O2-derived respiration, β-oxidation of fatty acids, and cholesterol metabolism. Peroxisome proliferators are a large class of structurally dissimilar industrial and pharmaceutical chemicals that were originally identified as inducers of both the size and the number of peroxisomes in rat and mouse livers or hepatocytes in vitro. Exposure to peroxisome proliferators leads to a stereotypical orchestration of adaptations consisting of hepatocellular hypertrophy and hyperplasia, and transcriptional induction of fatty acid metabolizing enzymes regulated in parallel with peroxisome proliferation. Chronic exposure to peroxisome proliferators causes liver tumors in both male and female mice and rats. Evidence indicates a pivotal role for a subset of nuclear receptor superfamily members, called peroxisome proliferator–activated receptors (PPARs), in mediating energy metabolism. Upon activation, PPARs regulate the expression of genes involved in lipid metabolism and peroxisome proliferation, as well as genes involved in cell growth. In this review, we describe the molecular mode of action of PPAR transcription factors, including ligand binding, interaction with specific DNA response elements, transcriptional activation, and cross talk with other signaling pathways. We discuss the evidence that suggests that PPARα and transcriptional coactivator Med1/PBP, a key subunit of the Mediator complex play a central role in mediating hepatic steatosis to hepatocarcinogenesis. Disproportionate increases in H2O2-generating enzymes generates excess reactive oxygen species resulting in sustained oxidative stress and progressive endoplasmic reticulum (ER) stress with activation of unfolded protein response signaling. Thus, these major contributors coupled with hepatocellular proliferation are the key players of peroxisome proliferators-induced hepatocarcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACOX1:

Acyl –CoA oxidase

CAR:

Constitutive androstane receptor

CRPC:

Castration-resistant prostate cancer

CBP:

CREB binding protein

CARM1:

Coactivator-associated arginine methyltransferase-1

CRE:

cAMP response element

CREB:

cAMP response element-binding

DEHA:

Di-(2-ethylhexyl) adipate

DEHP:

Di-(2-ethylhexyl)-phthalate

DENA:

Diethylnitrosamine

DRIP:

Vitamin D receptor-interacting protein(s)

ER:

Endoplasmic reticulum

GR:

Glucocorticoid receptor

L-PBE:

L-bifunctional peroxisomal enzyme

HAT:

Histone acetyl transferase

MAPK:

Mitogen activated protein kinase

Med1:

Mediator complex subunit 1

MFP:

Multifunctional protein

NCoA6IP:

Nuclear receptor coactivator 6 interacting protein

PBP:

PPAR-binding protein

PIMT:

PRIP interacting protein with methyltransferase domain

PPAR:

Peroxisome proliferator-activated receptor

PPRE:

Peroxisome proliferator response element

PRIP:

PPAR-interacting protein

RXR:

Retinoid-X-receptor

SBP2:

Selenium binding protein-2

SRC-1:

p160/steroid receptor coactivator-1

VLCF:

Very long chain fatty acid

Tibric Acid:

2-chloro-5-(3 5-dimethylpiperidinosulfonyl) benzoic acid

Wy-14, 643:

[4-chloro-6-(2, 3-xylidino)-2-pyrimidinylthio] acetic acid

References

  • Arnauld S, Fidaleo M, Clemencet MC, Chevillard G, Athias A, Gresti J, Wanders RJ, Latruffe N, Nicolas-Frances V, Mandard S (2009) Modulation of the hepatic fatty acid pool in peroxisomal 3-ketoacyl-CoA thiolase B-null mice exposed to the selective PPARalpha agonist Wy14,643. Biochimie 91:1376–1386

    Article  PubMed  CAS  Google Scholar 

  • Ashby J, Brady A, Elcombe CR, Elliott BM, Ishmael J, Odum J, Tugwood JD, Kettle S, Purchase IF (1994) Mechanistically-based human hazard assessment of peroxisome proliferator-induced hepatocarcinogenesis. Hum Exp Toxicol 13(Suppl 2):S1–S117

    Article  PubMed  Google Scholar 

  • Baes M, Huyghe S, Carmeliet P, Declercq PE, Collen D, Mannaerts GP, Van Veldhoven PP (2000) Inactivation of the peroxisomal multifunctional protein-2 in mice impedes the degradation of not only 2-methyl-branched fatty acids and bile acid intermediates but also of very long chain fatty acids. J Biol Chem 275:16329–16336

    Article  PubMed  CAS  Google Scholar 

  • Bai L, Jia Y, Viswakarma N, Huang J, Vluggens A, Wolins NE, Jafari N, Rao MS, Borensztajn J, Yang G, Reddy JK (2011) Transcription coactivator mediator subunit MED1 is required for the development of fatty liver in the mouse. Hepatology 53:1164–1174

    Article  PubMed  CAS  Google Scholar 

  • Brandt JM, Djouadi F, Kelly DP (1998) Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor alpha. J Biol Chem 273:23786–23792

    Article  PubMed  CAS  Google Scholar 

  • Caira F, Cherkaoui-Malki M, Hoefler G, Latruffe N (1996) Cloning and tissue expression of two cDNAs encoding the peroxisomal 2-enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase in the guinea pig liver. FEBS Lett 378:57–60

    Article  PubMed  CAS  Google Scholar 

  • Caira F, Clémencet MC, Cherkaoui-Malki M, Dieuaide-Noubhani M, Pacot C, Van Veldhoven PP, Latruffe N (1998) Differential regulation by a peroxisome proliferator of the different multifunctional proteins in guinea pig: cDNA cloning of the guinea pig D-specific multifunctional protein 2. Biochem J 330(Pt 3):1361–1368

    PubMed  CAS  Google Scholar 

  • Castillo MC, Sandalio LM, del Río LA, León J (2008) Peroxisome proliferation, wound-activated responses and expression of peroxisome-associated genes are cross-regulated but uncoupled in Arabidopsis thaliana. Plant Cell Environ 31:492–505

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Zhang C, Wu D, Chen H, Rorick A, Zhang X, Wang Q (2011) Phospho-MED1-enhanced UBE2C locus looping drives castration-resistant prostate cancer growth. EMBO J 30:2405–2419

    Article  PubMed  CAS  Google Scholar 

  • Chevillard G, Clemencet MC, Latruffe N, Nicolas-Frances V (2004) Targeted disruption of the peroxisomal thiolase B gene in mouse: a new model to study disorders related to peroxisomal lipid metabolism. Biochimie 86:849–856

    Article  PubMed  CAS  Google Scholar 

  • Crawford SE, Qi C, Misra P, Stellmach V, Rao MS, Engel JD, Zhu Y, Reddy JK (2002) Defects of the heart, eye, and megakaryocytes in peroxisome proliferator activator receptor-binding protein (PBP) null embryos implicate GATA family of transcription factors. J Biol Chem 277:3585–3592

    Article  PubMed  CAS  Google Scholar 

  • David RM, Moore MR, Cifone MA, Finney DC, Guest D (1999) Chronic peroxisome proliferation and hepatomegaly associated with the hepatocellular tumorigenesis of di(2-ethylhexyl)phthalate and the effects of recovery. Toxicol Sci 50:195–205

    Article  PubMed  CAS  Google Scholar 

  • De Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357

    PubMed  Google Scholar 

  • Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688

    Article  PubMed  CAS  Google Scholar 

  • Dieuaide-Noubhani M, Novikov D, Baumgart E, Vanhooren JC, Fransen M, Goethals M, Vandekerckhove J, Van Veldhoven PP, Mannaerts GP (1996) Further characterization of the peroxisomal 3-hydroxyacyl-CoA dehydrogenases from rat liver. Relationship between the different dehydrogenases and evidence that fatty acids and the C27 bile acids di- and trihydroxycoprostanic acids are metabolized by separate multifunctional proteins. Eur J Biochem 240:660–666

    Article  PubMed  CAS  Google Scholar 

  • Dieuaide-Noubhani M, Asselberghs S, Mannaerts GP, Van Veldhoven PP (1997) Evidence that multifunctional protein 2, and not multifunctional protein 1, is involved in the peroxisomal beta oxidation of pristanic acid. Biochem J 325(Pt 2):367–373

    PubMed  CAS  Google Scholar 

  • Fan C-Y, Pan J, Chu R, Lee D, Kluckman KD, Usuda N, Singh I, Yeldandi AV, Rao MS, Maeda N, Reddy JK (1996) Hepatocellular and hepatic peroxisomal alterations in mice with a disrupted peroxisomal fatty acyl-coenzyme A oxidase gene. J Biol Chem 271:24698–24710

    Article  PubMed  CAS  Google Scholar 

  • Fan C-Y, Pan J, Usuda N, Yeldandi AV, Rao MS, Reddy JK (1998) Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase: implications for peroxisome proliferators activated receptor α natural ligand metabolism. J Biol Chem 273:15639–15645

    Article  PubMed  CAS  Google Scholar 

  • Ferdinandusse S, Denis S, Van Roermund CW, Wanders RJ, Dacremont G (2004) Identification of the peroxisomal beta-oxidation enzymes involved in the degradation of long-chain dicarboxylic acids. J Lipid Res 45:1104–1111

    Article  PubMed  CAS  Google Scholar 

  • Gottlicher M, Widmark E, Li Q, Gustafsson JA (1992) Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proc Natl Acad Sci USA 1992(89):4653–4657

    Article  Google Scholar 

  • Guo D, Sarkar J, Ahmed MR, Viswakarma N, Jia Y, Yu S, Sambasiva Rao M, Reddy JK (2006) Peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP) but not PPAR-interacting protein (PRIP) is required for nuclear translocation of constitutive androstane receptor in mouse liver. Biochem Biophys Res Commun 347:485–495

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Fujita T, Usuda N, Cook W, Qi C, Peters JM, Gonzalez FJ, Yeldandi AV, Rao MS, Reddy JK (1999) Peroxisomal and mitochondrial fatty acid beta-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor alpha and peroxisomal fatty acyl-CoA oxidase. Genotype correlation with fatty liver phenotype. J Biol Chem 274:19228–19236

    Article  PubMed  CAS  Google Scholar 

  • Houten SM, Denis S, Argmann CA, Jia Y, Ferdinandusse S, Reddy JK, Wanders RJ (2012) Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids. J Lipid Res 53:1296–1303

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Viswakarma N, Yu S, Jia Y, Bai L, Vluggens A, Cherkaoui-Malki M, Khan M, Singh I, Yang G, Rao MS, Borensztajn J, Reddy JK (2011) Progressive endoplasmic reticulum stress contributes to hepatocarcinogenesis in fatty acyl-CoA oxidase 1-deficient mice. Am J Pathol 179:703–713

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Jia Y, Fu T, Viswakarma N, Bai L, Rao MS, Zhu Y, Borensztajn J, Reddy JK (2012) Sustained activation of PPARα by endogenous ligands increases hepatic fatty acid oxidation and prevents obesity in ob/ob mice. FASEB J 26:628–638

    Article  PubMed  CAS  Google Scholar 

  • Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, Qi C, Zhang Z, Hashimoto T, Rao MS, Huyghe S, Suzuki Y, VanVeldhoven PP, Baes M, Reddy JK (2003) Overexpression of peroxisome proliferator-activated receptor-α (PPARα)-regulated genes in liver in the absence of peroxisome proliferation in mice deficient in both L and D-forms of enoyl-CoA hydratase/dehydrogenase enzymes of peroxisomal β-oxidation system. J Biol Chem 2003(278):47232–47239

    Article  Google Scholar 

  • Jia Y, Qi C, Kashireddi P, Surapureddi S, Zhu YJ, Rao MS, Le Roith D, Chambon P, Gonzalez FJ, Reddy JK (2004) Transcription coactivator PBP, the peroxisome proliferator-activated receptor (PPAR)-binding protein, is required for PPARα-regulated gene expression in liver. J Biol Chem 279:24427–24434

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, Guo GL, Surapureddi S, Sarkar J, Qi C, Guo D, Xia J, Kashireddi P, Yu S, Cho YW, Rao MS, Kemper B, Ge K, Gonzalez FJ, Reddy JK (2005) Transcription coactivator peroxisome proliferator-activated receptor-binding protein/mediator 1 deficiency abrogates acetaminophen hepatotoxicity. Proc Natl Acad Sci USA 102:12531–12536

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, Viswakarma N, Fu T, Yu S, Rao MS, Borensztajn J, Reddy JK (2009) Conditional ablation of mediator subunit MED1 (MED1/PPARBP) gene in mouse liver attenuates glucocorticoid receptor agonist dexamethasone-induced hepatic steatosis. Gene Expr 14:291–306

    Article  PubMed  Google Scholar 

  • Jia Y, Viswakarma N, Crawford SE, Sarkar J, Sambasiva Rao M, Karpus WJ, Kanwar YS, Zhu YJ, Reddy JK (2012) Early embryonic lethality of mice with disrupted transcription cofactor PIMT/NCOA6IP/Tgs1 gene. Mech Dev 129:193–207

    Article  PubMed  CAS  Google Scholar 

  • Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM (1992) Convergence of 9-cis retinoic acid and peroxisome proliferator signaling pathways through heterodimer formation of their receptors. Nature 358:771–774

    Article  PubMed  CAS  Google Scholar 

  • Kluwe WM, McConnell EE, Huff JE, Haseman JK, Douglas JF, Hartwell WV (1982) Carcinogenicity testing of phthalate esters and related compounds by the National Toxicology Program and the National Cancer Institute. Environ Health Perspect 45:129–133

    Article  PubMed  CAS  Google Scholar 

  • Kornberg RD (2007) The molecular basis of eukaryotic transcription. Proc Natl Acad Sci USA 104:12955–12961

    Article  PubMed  CAS  Google Scholar 

  • Lalwani ND, Reddy MK, Qureshi SA, Sirtori CR, Abiko Y, Reddy JK (1983) Evaluation of selected hypolipidemic agents for the induction of peroxisomal enzymes and peroxisome proliferation in rat liver. Hum Toxicol 2:27–48

    Article  PubMed  CAS  Google Scholar 

  • Lalwani ND, Alvares K, Reddy MK, Reddy MN, Parikh I, Reddy JK (1987) Peroxisome proliferator binding protein: identification and partial characterization of nafenopin-, clofibric acid-, and ciprofibrate binding proteins from rat liver. Proc Natl Acad Sci USA 84:5142–5146

    Article  Google Scholar 

  • Lee SS, Pineau T, Drago J, Lee EJ, Owens JW, Kroetz DL, Fernandez-Salguero PM, Westphal H, Gonzalez FJ (1995) Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 15:3012–3022

    PubMed  CAS  Google Scholar 

  • Mannaerts GP, van Veldhoven PP (1996) Functions and organization of peroxisomal beta-oxidation. Ann N Y Acad Sci 804:99–115

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Yu S, Jia Y, Ahmed MR, Viswakarma N, Sarkar J, Kashireddy PV, Rao MS, Karpus W, Gonzalez FJ, Reddy JK (2007) Critical role for transcription coactivator peroxisome proliferator-activated receptor (PPAR)-binding protein/TRAP220 in liver regeneration and PPARalpha ligand-induced liver tumor development. J Biol Chem 282:17053–17060

    Article  PubMed  CAS  Google Scholar 

  • Meyer K, Lee JS, Dyck PA, Cao WQ, Rao MS, Thorgeirsson SS, Reddy JK (2003) Molecular profiling of hepatocellular carcinomas developing spontaneously in acyl-CoA oxidase deficient mice: comparison with liver tumors induced in wild-type mice by a peroxisome proliferator and a genotoxic carcinogen. Carcinogenesis 24:975–984

    Article  PubMed  CAS  Google Scholar 

  • Misra P, Qi C, Yu S, Shah SH, Cao WQ, Rao MS, Thimmapaya B, Zhu Y, Reddy JK (2002a) Interaction of PIMT with transcriptional coactivators CBP, p300, and PBP differential role in transcriptional regulation. J Biol Chem 277:20011–20019

    Article  PubMed  CAS  Google Scholar 

  • Misra P, Owuor ED, Li W, Yu S, Qi C, Meyer K, Zhu YJ, Rao MS, Kong AN, Reddy JK (2002b) Phosphorylation of transcriptional coactivator peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP). Stimulation of transcriptional regulation by mitogen-activated protein kinase. J Biol Chem 277:48745–48754

    Article  PubMed  CAS  Google Scholar 

  • Mouaikel J, Verheggen C, Bertrand E, Tazi J, Bordonné R (2002) Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus. Mol Cell 9:891–901

    Article  PubMed  CAS  Google Scholar 

  • Nila AG, Sandalio LM, López MG, Gómez M, del Río LA, Gómez-Lim MA (2006) Expression of a peroxisome proliferator-activated receptor gene (xPPARα) from Xenopus laevis in tobacco (Nicotiana tabacum) plants. Planta 224:569–581

    Article  PubMed  CAS  Google Scholar 

  • Novikov DK, Vanhove GF, Carchon H, Asselberghs S, Eyssen HJ, Van Veldhoven PP, Mannaerts GP (1994) Peroxisomal beta-oxidation. Purification of four novel 3-hydroxyacyl-CoA dehydrogenases from rat liver peroxisomes. J Biol Chem 269:27125–27135

    PubMed  CAS  Google Scholar 

  • Osumi T, Hashimoto T (1980) Purification and properties of mitochondrial and peroxisomal 3-hydroxyacyl-CoA dehydrogenase from rat liver. Arch Biochem Biophys 203:372–383

    Article  PubMed  CAS  Google Scholar 

  • Osumi T, Ishii N, Hijikata M, Kamijo K, Ozasa H, Furuta S, Miyazawa S, Kondo K, Inoue K, Kagamiyama H, Hashimoto T (1985) Molecular cloning and nucleotide sequence of the cDNA for rat peroxisomal enoyl-CoA: hydratase-3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme. J Biol Chem 260:8905–8910

    PubMed  CAS  Google Scholar 

  • Palma JM, Garrido M, Rodríguez-García MI, del Río LA (1991) Peroxisome proliferation and oxidative stress mediated by activated oxygen species in plant peroxisomes. Arch Biochem Biophys 287:68–74

    Article  PubMed  CAS  Google Scholar 

  • Palosaari PM, Hiltunen JK (1990) Peroxisomal bifunctional protein from rat liver is a trifunctional enzyme possessing 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and delta 3, delta 2- enoyl-CoA isomerase activities. J Biol Chem 265:2446–2449

    PubMed  CAS  Google Scholar 

  • Peters JM, Cattley RC, Gonzalez FJ (1997) Role of PPAR alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. Carcinogenesis 18:2029–2033

    Article  PubMed  CAS  Google Scholar 

  • Peters JM, Lee SS, Li W, Ward JM, Gavrilova O, Everett C, Reitman ML, Hudson LD, Gonzalez FJ (2000) Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor β/δ. Mol Cell Biol 20:5119–5128

    Article  PubMed  CAS  Google Scholar 

  • Peters JM, Shah YM, Gonzalez FJ (2012) The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer 12:181–195

    PubMed  CAS  Google Scholar 

  • Poll-The BT, Roels F, Ogier H, Scotto J, Vamecq J, Schutgens RB, Wanders RJ, van Roermund CW, van Wijland MJ, Schram AW, Tager JM, Saudubray J-M (1988) A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudo-neonatal adrenoleukodystrophy). Am J Hum Genet 42:422–434

    PubMed  CAS  Google Scholar 

  • Pyper SR, Viswakarma N, Yu S, Reddy JK (2010) PPARalpha: energy combustion, hypolipidemia, inflammation and cancer. Nucl Recept Signal. doi:10.1621/nrs.08002

    PubMed  Google Scholar 

  • Qi C, Zhu Y, Pan J, Usuda N, Maeda N, Yeldandi AV, Rao MS, Hashimoto T, Reddy JK (1999) Absence of spontaneous peroxisome proliferation in enoyl-CoA hydratase/L-3-hydroxyacyl-CoA dehydrogenase-deficient mouse liver: further support for the role of fatty acyl- CoA oxidase in PPARα ligand metabolism. J Biol Chem 274:15775–15780

    Article  PubMed  CAS  Google Scholar 

  • Qin YM, Poutanen MH, Helander HM, Kvist AP, Siivari KM, Schmitz W, Conzelmann E, Hellman U, Hiltunen JK (1997) Peroxisomal multifunctional enzyme of beta-oxidation metabolizing D-3-hydroxyacyl-CoA esters in rat liver: molecular cloning, expression and characterization. Biochem J 321:21–28

    PubMed  CAS  Google Scholar 

  • Rao MS, Reddy JK (1987) Peroxisome proliferation and hepatocarcinogenesis. Carcinogenesis 8:631–636

    Article  PubMed  CAS  Google Scholar 

  • Rao MS, Lalwani ND, Scarpelli DG, Reddy JK (1982) The absence of γ-glutamyl transpeptidase activity in putative preneoplastic lesions and in hepatocellular carcinomas induced in rats by the hypolipidemic peroxisome proliferator Wy-14,643. Carcinogenesis 3:1231–1233

    Article  PubMed  CAS  Google Scholar 

  • Rao MS, Lalwani ND, Watanabe TK, Reddy JK (1984) Inhibitory effect of antioxidants ethoxyquin and 2(3)-tert-butyl-4-hydroxyanisole on hepatic tumorigenesis in rats fed ciprofibrate, a peroxisome proliferator. Cancer Res 44:1072–1076

    PubMed  CAS  Google Scholar 

  • Reddy JK (2004) Peroxisome proliferators and peroxisome proliferator-activated receptor α: biotic and xenobiotic sensing. Am J Pathol 164:2305–2321

    Article  PubMed  CAS  Google Scholar 

  • Reddy JK, Chu R (1996) Peroxisome proliferator-induced pleiotropic responses: pursuit of a phenomenon. Ann N Y Acad Sci 804:176–201

    Article  PubMed  CAS  Google Scholar 

  • Reddy JK, Hashimoto T (2001) Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu Rev Nutr 21:193–230

    Article  PubMed  CAS  Google Scholar 

  • Reddy JK, Krishnakantha TP (1975) Hepatic peroxisome proliferation: induction by two novel compounds structurally unrelated to clofibrate. Science 190:787–789

    Article  PubMed  CAS  Google Scholar 

  • Reddy JK, Lalwani ND (1983a) Carcinogenesis by hepatic peroxisome proliferators: evaluation of the risk of hypolipidemic drugs and industrial plasticizers to humans. Crit Rev Toxicol 12:1–58

    Article  PubMed  CAS  Google Scholar 

  • Reddy JK, Lalwani ND (1983b) Carcinogenesis by hepatic peroxisome proliferators: evaluation of the risk of hypolipidemic drugs and industrial plasticizers to humans. CRC Crit Rev Toxicol 12:1–58

    Article  CAS  Google Scholar 

  • Reddy JK, Mannaerts GP (1994) Peroxisomal lipid metabolism. Annu Rev Nutr 14:343–370

    Article  PubMed  CAS  Google Scholar 

  • Reddy JK, Qureshi SA (1979) Tumorigenicity of the hypolipidaemic peroxisome proliferator ethyl-alpha-p-chlorophenoxyisobutyrate (clofibrate) in rats. Br J Cancer 40:476–482

    Article  PubMed  CAS  Google Scholar 

  • Reddy JK, Rao MS (1977) Malignant tumors in rats fed nafenopin, a hepatic peroxisome proliferator. J Natl Cancer Inst 59:1645–1650

    PubMed  CAS  Google Scholar 

  • Reddy JK, Rao MS (1986) Peroxisome proliferators and cancer: mechanisms and implications. Trends Pharmacol Sci 7:438–443

    Article  CAS  Google Scholar 

  • Reddy JK, Rao MS (1988) Peroxisome proliferation-related oxidative stress and hepatocarcinogenesis. In: Cerutti PA, Nygaard AF, Simic MG (eds) Anticarcinogenesis and radiation protection, 1st edn. Springer, New York

    Google Scholar 

  • Reddy JK, Rao MS (2006) Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 290:G852–G858

    Article  PubMed  CAS  Google Scholar 

  • Reddy JK, Rao MS, Moody DE (1976) Hepatocellular carcinomas in acatalasemic mice treated with nafenopin, a hypolipidemic peroxisome proliferator. Cancer Res 36:1211–1217

    PubMed  CAS  Google Scholar 

  • Reddy JK, Rao MS, Azarnoff DL, Sell S (1979) Mitogenic and carcinogenic effects of a hypolipidemic peroxisome proliferator, [4-chloro-6-(2, 3-xylidino)-2-pyrimidinylthio] acetic acid (Wy-14,643) in rat and mouse liver. Cancer Res 39:152–161

    PubMed  CAS  Google Scholar 

  • Reddy JK, Azarnoff DL, Hignite CE (1980) Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature 283:397–398

    Article  PubMed  CAS  Google Scholar 

  • Reddy JK, Lalwani ND, Reddy MK, Qureshi SA (1982) Excessive accumulation of autofluorescent lipofuscin in the liver during hepatocarcinogenesis by methyl clofenapate and other hypolipidemic peroxisome proliferators. Cancer Res 42:259–266

    PubMed  CAS  Google Scholar 

  • Reddy JK, Goel SK, Nemali MR, Carrino JJ, Laffler TG, Reddy MK, Sperbeck SJ, Osumi T, Hashimoto T, Lalwani ND, Rao MS (1986) Transcription regulation of peroxisomal fatty acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase in rat liver by peroxisome proliferators. Proc Natl Acad Sci USA 83:1747–1751

    Article  PubMed  CAS  Google Scholar 

  • Rusyn I, Asakura S, Pachkowski B, Bradford BU, Denissenko MF, Peters JM, Holland SM, Reddy JK, Cunningham ML, Swenberg JA (2004) Expression of base excision DNA repair genes is a sensitive biomarker for in vivo detection of chemical-induced chronic oxidative stress: identification of the molecular source of radicals responsible for DNA damage by peroxisome proliferators. Cancer Res 64:1050–1057

    Article  PubMed  CAS  Google Scholar 

  • Seedorf U, Raabe M, Ellinghaus P, Kannenberg F, Fobker M, Engel T, Denis S, Wouters F, Wirtz KW, Wanders RJ, Maeda N, Assmann G (1988) Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function. Genes Dev 12:1189–1201

    Article  Google Scholar 

  • Seedorf U, Brysch P, Engel T, Schrage K, Assmann G (1994) Sterol carrier protein X is peroxisomal 3-oxoacyl coenzyme A thiolase with intrinsic sterol carrier and lipid transfer activity. J Biol Chem 269:21277–21283

    PubMed  CAS  Google Scholar 

  • Shah YM, Morimura K, Yang Q, Tanabe T, Takagi M, Gonzalez FJ (2007) Peroxisome proliferator-activated receptor alpha regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation. Mol Cell Biol 27:4238–4247

    Article  PubMed  CAS  Google Scholar 

  • Steinberg SJ, Morgenthaler J, Heinzer AK, Smith KD, Watkins PA (2000) Very long-chain acyl-CoA synthetases. Human “bubblegum” represents a new family of proteins capable of activating very long-chain fatty acids. J Biol Chem 275:35162–35169

    Article  PubMed  CAS  Google Scholar 

  • Tolbert NE (1981) Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem 50:133–157

    Article  PubMed  CAS  Google Scholar 

  • Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPARγ2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8:1224–1234

    Article  PubMed  CAS  Google Scholar 

  • Tyra HM, Spitz DR, Rutkowski DT (2012) Inhibition of fatty acid oxidation enhances oxidative protein folding and protects hepatocytes from endoplasmic reticulum stress. Mol Biol Cell 23:811–819

    Article  PubMed  CAS  Google Scholar 

  • Viswakarma N, Jia Y, Bai L, Vluggens A, Borensztajn J, Xu J, Reddy JK (2010) Coactivators in PPAR-regulated gene expression. PPAR Res. doi:pii:250126.10.1155/2010/250126

    Google Scholar 

  • von den Bosch H, Schutgens RB, Wanders RJ, Tager JM (1992) Biochemistry of peroxisomes. Annu Rev Biochem 61:157–197

    Article  PubMed  Google Scholar 

  • Wanders RJ, Vreken P, Ferdinandusse S, Jansen GA, Waterham HR, Van Roermund CWT, Van Grunsven EG (2001) Peroxisomal fatty acid α- and β-oxidation in humans: enzymology, peroxisomal metabolite transporters, and peroxisomal diseases. Biochem Soc Trans 29(Pt 2):250–267

    Article  PubMed  CAS  Google Scholar 

  • Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, Evans RM (2003) Peroxisome proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113:159–170

    Article  PubMed  CAS  Google Scholar 

  • Warren JR, Simmon VF, Reddy JK (1980) Properties of hypolipidemic peroxisome proliferators in the lymphocyte (3H)thymidine and Salmonella mutagenesis assays. Cancer Res 40:36–41

    PubMed  CAS  Google Scholar 

  • Weisburger JH, Williams GM (2000) The distinction between genotoxic and epigenetic carcinogens and implication for cancer risk. Toxicol Sci 57:4–5

    Article  PubMed  CAS  Google Scholar 

  • Xu R, Cuebas DA (1996) The reactions catalyzed by the inducible bifunctional enzyme of rat liver peroxisomes cannot lead to the formation of bile acids. Biochem Biophys Res Commun 221:271–278

    Article  PubMed  CAS  Google Scholar 

  • Yeldandi AV, Rao MS, Reddy JK (2000) Hydrogen peroxide generation in peroxisome proliferator-induced oncogenesis. Mutat Res 448:159–177

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Qi C, Korenberg JR, Chen X-N, Noya D, Rao MS, Reddy JK (1995) Structural organization of mouse peroxisome proliferator-activated receptor γ (mPPARγ) gene: alternative promoter use and different splicing yield two mPPARγ isoforms. Proc Natl Acad Sci USA 92:7921–7925

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Qi C, Jia Y, Nye JS, Rao MS, Reddy JK (2000) Deletion of PBP/PPARBP, the gene for nuclear receptor coactivator peroxisome proliferator-activated receptor-binding protein, results in embryonic lethality. J Biol Chem 275:14779–14782

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Qi C, Cao WQ, Yeldandi AV, Rao MS, Reddy JK (2001) Cloning and characterization of PIMT, a protein with a methyltransferase domain, which interacts with and enhances nuclear receptor coactivator PRIP function. Proc Natl Acad Sci USA 18:10380–10385

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parimal Misra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Misra, P., Viswakarma, N., Reddy, J.K. (2013). Peroxisome Proliferator-Activated Receptor-α Signaling in Hepatocarcinogenesis. In: del Río, L. (eds) Peroxisomes and their Key Role in Cellular Signaling and Metabolism. Subcellular Biochemistry, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6889-5_5

Download citation

Publish with us

Policies and ethics