Skip to main content

Peroxisomes in Human Health and Disease: Metabolic Pathways, Metabolite Transport, Interplay with Other Organelles and Signal Transduction

  • Chapter
  • First Online:
Peroxisomes and their Key Role in Cellular Signaling and Metabolism

Part of the book series: Subcellular Biochemistry ((SCBI,volume 69))

Abstract

Peroxisomes play a key role in human physiology as exemplified by the devastating consequences of a defect in peroxisome biogenesis as observed in patients affected by Zellweger syndrome. The main metabolic functions of peroxisomes in humans include: (1) fatty acid beta-oxidation; (2) etherphospholipid synthesis; (3) bile acid synthesis; (4) fatty acid alpha-oxidation, and (5) glyoxylate detoxification. Since peroxisomes lack a citric acid cycle and respiratory chain like mitochondria do, metabolism in peroxisomes requires continued cross-talk with other organelles, notably mitochondria and the endoplasmic reticulum in order to allow continued metabolism of the products generated by peroxisomes. Many of the metabolites which require peroxisomes for homeostasis, are involved in signal transduction pathways. These include the primary bile acids; platelet activating factor; plasmalogens, N-acylglycines and N-acyltaurines; docosahexaenoic acid as well as multiple prostanoids. The current state of knowledge in this area will be discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Acnat:

Acyl-CoA: amino acid N-acyltransferase

ACOX1:

Acyl-CoA oxidase 1

ACYL-DHAP:

Acyldihydroxyacetone phosphate

ADHAPS:

Alkyldihydroxyacetone phosphate synthase

AGT:

Alanine glyoxylate aminotransferase

ALD:

Adrenoleukodystrophy

BAAT:

Bile acid-CoA: amino acid N-acetyltransferase

BCOX:

Branched-chain acyl-CoA oxidase

BSEP:

Bile salt export pump

CA:

Cholic acid

CDCA:

Chenodeoxycholic acid

CPT1:

Carnitine palmityltransferase 1

CrAT:

Carnitine acetyltransferase

CrOT:

Carnitine octanoyltransferase

CYP7A1:

Cholesterol 7-Alpha-hydroxylase

DBP:

D-bifunctional protein

DHA:

Docosahexaenoic acid

DHCA:

Dihydroxycholestanoic acid

DHAPAT:

Dihydroxyacetone phosphate acyltransferase

EPL:

Etherphospholipid

ER:

Endoplasmic reticulum

FA:

Fatty acid

FGF:

Fibroblasts growth factor

FXR:

Farnesoid-X receptor

LBP:

L-bifunctional protein

LRH-1:

Liver receptor homologous Protein-1

LRM:

Lipid raft microdomains

LTE4:

Cysteinyl leukotriene-4

PAF:

Platelet activating factor

PD:

Peroxisomal disorder

ROS:

reactive oxygen species

SCPx:

Sterol-carrier-protein X

TH:

Thiolase

THCA:

Trihydroxycholestanoic acid

VLCFA:

Very long-chain fatty acids

ZS:

Zellweger syndrome

References

  • Baumgart E, Fahimi HD, Stich A, Volkl A (1996) L-lactate dehydrogenase A4- and A3B isoforms are bona fide peroxisomal enzymes in rat liver. Evidence for involvement in intraperoxisomal NADH reoxidation. J Biol Chem 271:3846–3855

    Article  PubMed  CAS  Google Scholar 

  • Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235–253

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw HB, Walker JM (2005) The expanding field of cannabimimetic and related lipid mediators. Br J Pharmacol 144:459–465

    Article  PubMed  CAS  Google Scholar 

  • Brites P, Waterham HR, Wanders RJA (2004) Functions and biosynthesis of plasmalogens in health and disease. Biochim Biophys Acta 1636:219–231

    Article  PubMed  CAS  Google Scholar 

  • Brown FR, McAdams AJ, Cummins JW, Konkol R, Singh I, Moser AB, Moser HW (1982) Cerebro-hepato-renal (Zellweger) syndrome and neonatal adrenoleukodystrophy: similarities in phenotype and accumulation of very long chain fatty acids. Johns Hopkins Med J 151:344–351

    PubMed  Google Scholar 

  • Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, Vidaud M, Abel U, Dal-Cortivo L, Caccavelli L, Mahlaoui N, Kiermer V, Mittelstaedt D, Bellesme C, Lahlou N, Lefrere F, Blanche S, Audit M, Payen E, Leboulch P, l’Homme B, Bougneres P, Von KC, Fischer A, Cavazzana-Calvo M, Aubourg P (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–823

    Article  PubMed  CAS  Google Scholar 

  • Cooper TG, Beevers H (1969) Beta oxidation in glyoxysomes from castor bean endosperm. J Biol Chem 244:3514–3520

    PubMed  CAS  Google Scholar 

  • de Waart DR, Koomen GC, Wanders RJA (1994) Studies on the urinary excretion of thromboxane B2 in Zellweger patients and control subjects: evidence for a major role for peroxisomes in the beta-oxidative chain-shortening of thromboxane B2. Biochim Biophys Acta 1226:44–48

    Article  PubMed  Google Scholar 

  • del Río LA (2011) Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 506:1–11

    Article  PubMed  Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gomez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    Article  PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  PubMed  Google Scholar 

  • Diczfalusy U, Kase BF, Alexson SE, Bjorkhem I (1991) Metabolism of prostaglandin F2 alpha in Zellweger syndrome. Peroxisomal beta-oxidation is a major importance for in vivo degradation of prostaglandins in humans. J Clin Invest 88:978–984

    Article  PubMed  CAS  Google Scholar 

  • Diczfalusy U, Vesterqvist O, Kase BF, Lund E, Alexson SE (1993) Peroxisomal chain-shortening of thromboxane B2: evidence for impaired degradation of thromboxane B2 in Zellweger syndrome. J Lipid Res 34:1107–1113

    PubMed  CAS  Google Scholar 

  • Ebberink MS, Koster J, Visser G, van Spronsen FJ, Stolte-Dijkstra I, Smit GPA, Fock JM, Kemp S, Wanders RJA, Waterham HR (2012) A novel human defect of peroxisome division due to a homozygous non-sense mutation in the PEX11 beta gene. J Med Genet 49:307–313

    Article  PubMed  CAS  Google Scholar 

  • Fransen M, Nordgren M, Wang B, Apanasets O (2012) Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. Biochim Biophys Acta 1822:1363–1373

    Article  PubMed  CAS  Google Scholar 

  • Goldfischer S, Moore CL, Johnson AB, Spiro AJ, Valsamis MP, Wisniewski HK, Ritch RH, Norton WT, Rapin I, Gartner LM (1973) Peroxisomal and mitochondrial defects in the cerebro-hepato- renal syndrome. Science 182:62–64

    Article  PubMed  CAS  Google Scholar 

  • Gorgas K, Teigler A, Komljenovic D, Just WW (2006) The ether lipid-deficient mouse: tracking down plasmalogen functions. Biochim Biophys Acta 1763:1511–1526

    Article  PubMed  CAS  Google Scholar 

  • Hertz R, Magenheim J, Berman I, Bar-Tana J (1998) Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4alpha. Nature 392:512–516

    Article  PubMed  CAS  Google Scholar 

  • Heymans HSA, Schutgens RBH, Tan R, van den Bosch H, Borst P (1983) Severe plasmalogen deficiency in tissues of infants without peroxisomes (Zellweger syndrome). Nature 306:69–70

    Article  PubMed  CAS  Google Scholar 

  • Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, Donahee M, Wang DY, Mansfield TA, Kliewer SA, Goodwin B, Jones SA (2003) Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 17:1581–1591

    Article  PubMed  CAS  Google Scholar 

  • Houten SM, Denis S, Argmann CA, Jia Y, Ferdinandusse S, Reddy JK, Wanders RJA (2012) Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids. J Lipid Res 53:1296–1303

    Article  PubMed  CAS  Google Scholar 

  • Hunt MC, Siponen MI, Alexson SE (2012) The emerging role of acyl-CoA thioesterases and acyltransferases in regulating peroxisomal lipid metabolism. Biochim Biophys Acta 1822:1397–1410

    Article  PubMed  CAS  Google Scholar 

  • Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2:217–225

    Article  PubMed  CAS  Google Scholar 

  • Jedlitschky G, Mayatepek E, Keppler D (1993) Peroxisomal leukotriene degradation: biochemical and clinical implications. Adv Enzyme Regul 33:181–194

    Article  PubMed  CAS  Google Scholar 

  • Jump DB, Botolin D, Wang Y, Xu J, Christian B, Demeure O (2005) Fatty acid regulation of hepatic gene transcription. J Nutr 135:2503–2506

    PubMed  CAS  Google Scholar 

  • Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci USA 94:4318–4323

    Article  PubMed  CAS  Google Scholar 

  • Kohno M, Hasegawa H, Inoue A, Muraoka M, Miyazaki T, Oka K, Yasukawa M (2006) Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18. Biochem Biophys Res Commun 347:827–832

    Article  PubMed  CAS  Google Scholar 

  • Kruska N, Reiser G (2011) Phytanic acid and pristanic acid, branched-chain fatty acids associated with Refsum disease and other inherited peroxisomal disorders, mediate intracellular Ca2+ signaling through activation of free fatty acid receptor GPR40. Neurobiol Dis 43:465–472

    Article  PubMed  CAS  Google Scholar 

  • Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, Mohammadi M, Rosenblatt KP, Kliewer SA, Kuro-o M (2007) Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 282:26687–26695

    Article  PubMed  CAS  Google Scholar 

  • Lazarow PB, De Duve C (1976) A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci USA 73:2043–2046

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Caplan MS, Li D, Jilling T (2008) Polyunsaturated fatty acids block platelet-activating factor-induced phosphatidylinositol 3 kinase/Akt-mediated apoptosis in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 294:G1181–G1190

    Article  PubMed  CAS  Google Scholar 

  • Mayatepek E, Flock B (1999) Increased urinary excretion of LTB4 and omega-carboxy-LTB4 in patients with Zellweger syndrome. Clin Chim Acta 282:151–155

    Article  PubMed  CAS  Google Scholar 

  • Mayatepek E, Ferdinandusse S, Meissner T, Wanders RJA (2004) Analysis of cysteinyl leukotrienes and their metabolites in bile of patients with peroxisomal or mitochondrial beta-oxidation defects. Clin Chim Acta 345:89–92

    Article  PubMed  CAS  Google Scholar 

  • O’Byrne J, Hunt MC, Rai DK, Saeki M, Alexson SE (2003) The human bile acid-CoA:amino acid N-acyltransferase functions in the conjugation of fatty acids to glycine. J Biol Chem 278:34237–34244

    Article  PubMed  Google Scholar 

  • Oh DY, Yoon JM, Moon MJ, Hwang JI, Choe H, Lee JY, Kim JI, Kim S, Rhim H, O’Dell DK, Walker JM, Na HS, Lee MG, Kwon HB, Kim K, Seong JY (2008) Identification of farnesyl pyrophosphate and N-arachidonylglycine as endogenous ligands for GPR92. J Biol Chem 283:21054–21064

    Article  PubMed  CAS  Google Scholar 

  • Pellicoro A, van den Heuvel FA, Geuken M, Moshage H, Jansen PL, Faber KN (2007) Human and rat bile acid-CoA:amino acid N-acyltransferase are liver-specific peroxisomal enzymes: implications for intracellular bile salt transport. Hepatology 45:340–348

    Article  PubMed  CAS  Google Scholar 

  • Perichon R, Moser AB, Wallace WC, Cunningham SC, Roth GS, Moser HW (1998) Peroxisomal disease cell lines with cellular plasmalogen deficiency have impaired muscarinic cholinergic signal transduction activity and amyloid precursor protein secretion. Biochem Biophys Res Commun 248:57–61

    Article  PubMed  CAS  Google Scholar 

  • Reilly SJ, O’Shea EM, Andersson U, O’Byrne J, Alexson SE, Hunt MC (2007) A peroxisomal acyltransferase in mouse identifies a novel pathway for taurine conjugation of fatty acids. FASEB J 21:99–107

    Article  PubMed  CAS  Google Scholar 

  • Reiser G, Schonfeld P, Kahlert S (2006) Mechanism of toxicity of the branched-chain fatty acid phytanic acid, a marker of Refsum disease, in astrocytes involves mitochondrial impairment. Int J Dev Neurosci 24:113–122

    Article  PubMed  CAS  Google Scholar 

  • Rodemer C, Thai TP, Brugger B, Kaercher T, Werner H, Nave KA, Wieland F, Gorgas K, Just WW (2003) Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum Mol Genet 12:1881–1895

    Article  PubMed  CAS  Google Scholar 

  • Ronicke S, Kruska N, Kahlert S, Reiser G (2009) The influence of the branched-chain fatty acids pristanic acid and Refsum disease-associated phytanic acid on mitochondrial functions and calcium regulation of hippocampal neurons, astrocytes, and oligodendrocytes. Neurobiol Dis 36:401–410

    Article  PubMed  Google Scholar 

  • Roy M-O, Hannedouche S (2007) Ligand for G-protein coupled receptor GPR72 and uses thereof, Canadian Patent Application, pp 1–99

    Google Scholar 

  • Saghatelian A, McKinney MK, Bandell M, Patapoutian A, Cravatt BF (2006) A FAAH-regulated class of N-acyl taurines that activates TRP ion channels. Biochemistry 45:9007–9015

    Article  PubMed  CAS  Google Scholar 

  • Salido E, Pey AL, Rodriguez R, Lorenzo V (2012) Primary hyperoxalurias: disorders of glyoxylate detoxification. Biochim Biophys Acta 1822:1453–1464

    Article  PubMed  CAS  Google Scholar 

  • Savary S, Trompier D, Andreoletti P, Le BF, Demarquoy J, Lizard G (2012) Fatty acids – induced lipotoxicity and inflammation. Curr Drug Metab 13:1358–1370

    Article  PubMed  CAS  Google Scholar 

  • Spector AA, Fang X, Snyder GD, Weintraub NL (2004) Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Prog Lipid Res 43:55–90

    Article  PubMed  CAS  Google Scholar 

  • Stables MJ, Gilroy DW (2011) Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res 50:35–51

    Article  PubMed  CAS  Google Scholar 

  • Stroeve JH, Brufau G, Stellaard F, Gonzalez FJ, Staels B, Kuipers F (2010) Intestinal FXR-mediated FGF15 production contributes to diurnal control of hepatic bile acid synthesis in mice. Lab Invest 90:1457–1467

    Article  PubMed  CAS  Google Scholar 

  • Tan B, O’Dell DK, Yu YW, Monn MF, Hughes HV, Burstein S, Walker JM (2010) Identification of endogenous acyl amino acids based on a targeted lipidomics approach. J Lipid Res 51:112–119

    Article  PubMed  Google Scholar 

  • Tsikas D, Schwedhelm E, Fauler J, Gutzki FM, Mayatepek E, Frolich JC (1998) Specific and rapid quantification of 8-iso-prostaglandin F2alpha in urine of healthy humans and patients with Zellweger syndrome by gas chromatography-tandem mass spectrometry. J Chromatogr B Biomed Sci Appl 716:7–17

    Article  PubMed  CAS  Google Scholar 

  • van Roermund CWT, Elgersma Y, Singh N, Wanders RJA, Tabak HF (1995) The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J 14:3480–3486

    PubMed  Google Scholar 

  • van Roermund CWT, Hettema EH, Kal AJ, van den Berg M, Tabak HF, Wanders RJA (1998) Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions. EMBO J 17:677–687

    Article  PubMed  Google Scholar 

  • Van Veldhoven PP (2010) Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res 51:2863–2895

    Article  PubMed  Google Scholar 

  • Vanhove GF, Van Veldhoven PP, Fransen M, Denis S, Eyssen HJ, Wanders RJA, Mannaerts GP (1993) The CoA esters of 2-methyl-branched chain fatty acids and of the bile acid intermediates di- and trihydroxycoprostanic acids are oxidized by one single peroxisomal branched chain acyl-CoA oxidase in human liver and kidney. J Biol Chem 268:10335–10344

    PubMed  CAS  Google Scholar 

  • Verhoeven NM, Roe DS, Kok RM, Wanders RJA, Jakobs C, Roe C (1998) Phytanic acid and pristanic acid are oxidized by sequential peroxisomal and mitochondrial reactions in cultured fibroblasts. J Lipid Res 39:66–74

    PubMed  CAS  Google Scholar 

  • Wanders RJA, Brites P (2010) Biosynthesis of ether-phospholipids including plasmalogens, peroxisomes and human disease: new insights into an old problem. Clin Lipidol 5:379–386

    Article  CAS  Google Scholar 

  • Wanders RJA, Waterham HR (2006) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332

    Article  PubMed  CAS  Google Scholar 

  • Wanders RJA, Komen JC, Ferdinandusse S (2011) Phytanic acid metabolism in health and disease. Biochim Biophys Acta 1811:498–507

    Article  PubMed  CAS  Google Scholar 

  • Waterham HR, Koster J, van Roermund CWT, Mooyer PAW, Wanders RJA, Leonard JV (2007) A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356:1736–1741

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa T, Shimano H, Yahagi N, Ide T, Amemiya-Kudo M, Matsuzaka T, Nakakuki M, Tomita S, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Takahashi A, Sone H, Osuga JJ, Gotoda T, Ishibashi S, Yamada N (2002) Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J Biol Chem 277:1705–1711

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The author gratefully acknowledges Mrs. Maddy Festen for expert preparation of the manuscript and Mr. Jos Ruiter for artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald J. A. Wanders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wanders, R.J.A. (2013). Peroxisomes in Human Health and Disease: Metabolic Pathways, Metabolite Transport, Interplay with Other Organelles and Signal Transduction. In: del Río, L. (eds) Peroxisomes and their Key Role in Cellular Signaling and Metabolism. Subcellular Biochemistry, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6889-5_2

Download citation

Publish with us

Policies and ethics