Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 69))

Abstract

In higher plants, light-grown seedlings exhibit photomorphogenesis, a developmental program controlled by a complex web of interactions between photoreceptors, central repressors, and downstream effectors that leads to changes in gene expression and physiological changes. Light induces peroxisomal proliferation through a phytochrome A-mediated pathway, in which the transcription factor HYH activates the peroxisomal proliferation factor gene PEX11b. Microarray analysis revealed that light activates the expression of a number of peroxisomal genes, especially those involved in photorespiration, a process intimately associated with photosynthesis. In contrast, light represses the expression of genes involved in β–oxidation and the glyoxylate cycle, peroxisomal pathways essential for seedling establishment before photosynthesis begins. Furthermore, the peroxisome is a source of signaling molecules, notably nitric oxide, which promotes photomorphogenesis. Lastly, a gain-of-function mutant of the peroxisomal membrane-tethered RING-type E3 ubiquitin ligase PEX2 partially suppresses the phenotype of the photomorphogenic mutant det1. Possible mechanisms underlying this phenomenon are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babujee L, Wurtz V, Ma C, Lueder F, Soni P, van Dorsselaer A, Reumann S (2010) The proteome map of spinach leaf peroxisomes indicates partial compartmentalization of phylloquinone (vitamin K1) biosynthesis in plant peroxisomes. J Exp Bot 61:1441–1453

    Article  PubMed  CAS  Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A (2011) NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acids Res 39:D1005–D1010

    Article  PubMed  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    Article  PubMed  CAS  Google Scholar 

  • Benvenuto G, Formiggini F, Laflamme P, Malakhov M, Bowler C (2002) The photomorphogenesis regulator DET1 binds the amino-terminal tail of histone H2B in a nucleosome context. Curr Biol 12:1529–1534

    Article  PubMed  CAS  Google Scholar 

  • Carrie C, Kuhn K, Murcha MW, Duncan O, Small ID, O’Toole N, Whelan J (2009) Approaches to defining dual-targeted proteins in Arabidopsis. Plant J 57:1128–1139

    Article  PubMed  CAS  Google Scholar 

  • Casal JJ, Mazzella MA (1998) Conditional synergism between cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple mutants in Arabidopsis. Plant Physiol 118:19–25

    Article  PubMed  CAS  Google Scholar 

  • Castillo MC, Sandalio LM, del Río LA, León J (2008) Peroxisome proliferation, wound-activated responses and expression of peroxisome-associated genes are cross-regulated but uncoupled in Arabidopsis thaliana. Plant Cell Environ 31:492–505

    Article  PubMed  CAS  Google Scholar 

  • Chandler JW (2008) Cotyledon organogenesis. J Exp Bot 59:2917–2931

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Chory J (2011) Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 21:664–671

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117

    Article  PubMed  CAS  Google Scholar 

  • Chory J (2010) Light signal transduction: an infinite spectrum of possibilities. Plant J 61:982–991

    Article  PubMed  CAS  Google Scholar 

  • Chory J, Peto C, Feinbaum R, Pratt L, Ausubel F (1989) Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell 58:991–999

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Palma JM, del Río LA, Barroso JB (2009) Evidence supporting the existence of L-arginine-dependent nitric oxide synthase in plants. New Phytol 184:9–14

    Article  PubMed  CAS  Google Scholar 

  • Cousins AB, Pracharoenwattana I, Zhou W, Smith SM, Badger MR (2008) Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release. Plant Physiol 148:786–795

    Article  PubMed  CAS  Google Scholar 

  • de Felipe MR, Lucas MM, Pozuelo JM (1988) Cytochemical study of catalase and peroxidase in the mesophyll of Lolium rigidum plants treated with isoproturon. J Plant Physiol 132:67–73

    Article  Google Scholar 

  • del Río LA (2011) Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 506:1–11

    Article  PubMed  Google Scholar 

  • del Río LA, Pastori GM, Palma JM, Sandalio LM, Sevilla F, Corpas FJ, Jimenez A, López-Huertas E, Hernandez JA (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol 116:1195–1200

    Article  PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  PubMed  Google Scholar 

  • Desai M, Hu J (2008) Light induces peroxisome proliferation in Arabidopsis seedlings through the photoreceptor phytochrome A, the transcription factor HY5 HOMOLOG, and the peroxisomal protein PEROXIN11b. Plant Physiol 146:1117–1127

    Article  PubMed  CAS  Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  PubMed  CAS  Google Scholar 

  • Eubel H, Meyer EH, Taylor NL, Bussell JD, O’Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148:1809–1829

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Marcos M, Sanz L, Lorenzo O (2012) Nitric oxide: an emerging regulator of cell elongation during primary root growth. Plant Signal Behav 7:196–200

    Article  PubMed  Google Scholar 

  • Ferreira MB, Bird B, Davies DD (1989) The effect of light on the structure and organization of Lemna peroxisomes. J Exp Bot 40:1029–1035

    Article  Google Scholar 

  • Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60:455–484

    Article  PubMed  CAS  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  Google Scholar 

  • Gross J, Cho WK, Lezhneva L, Falk J, Krupinska K, Shinozaki K, Seki M, Herrmann RG, Meurer J (2006) A plant locus essential for phylloquinone (vitamin K1) biosynthesis originated from a fusion of four eubacterial genes. J Biol Chem 281:17189–17196

    Article  PubMed  CAS  Google Scholar 

  • Hancock JT (2012) NO synthase? Generation of nitric oxide in plants. Period Biol 114:19–24

    Google Scholar 

  • Heijde M, Ulm R (2012) UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci 17:230–237

    Article  PubMed  CAS  Google Scholar 

  • Hu J (2009) Molecular basis of peroxisome division and proliferation in plants. Int Rev Cell Mol Biol 279:79–99

    Article  Google Scholar 

  • Hu J, Desai M (2008) Light control of peroxisome proliferation during Arabidopsis photomorphogenesis. Plant Signal Behav 3:801–803

    Article  PubMed  Google Scholar 

  • Hu J, Aguirre M, Peto C, Alonso J, Ecker J, Chory J (2002) A role for peroxisomes in photomorphogenesis and development of Arabidopsis. Science 297:405–409

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303

    Article  PubMed  CAS  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  • Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev 8:217–230

    Article  CAS  Google Scholar 

  • Kamada-Nobusada T, Hayashi M, Fukazawa M, Sakakibara H, Nishimura M (2008) A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol 49:1272–1282

    Article  PubMed  CAS  Google Scholar 

  • Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010) Light-regulated plant growth and development. Curr Top Dev Biol 91:29–66

    Article  PubMed  CAS  Google Scholar 

  • Kaur N, Hu J (2011) Defining the plant peroxisomal proteome: from Arabidopsis to rice. Front Plant Sci 3. doi:10.3389/fpls.2011.00103

  • Kaur N, Reumann S, Hu J (2009) Peroxisome biogenesis and function. Arabidopsis Book 7:e0123. doi:0110.1199/tab.0123

    PubMed  Google Scholar 

  • Kaur N, Zhao Q, Xie Q, Hu J (2013) Arabidopsis RING peroxins are E3 ubiquitin ligases that interact with two homologous ubiquitin receptor proteins. J Integr Plant Biol 55:108–120. doi:10.1111/jipb.12014

    PubMed  Google Scholar 

  • Kim HU, van Oostende C, Basset GJ, Browse J (2008) The AAE14 gene encodes the Arabidopsis o-succinylbenzoyl-CoA ligase that is essential for phylloquinone synthesis and photosystem-I function. Plant J 54:272–283

    Article  PubMed  CAS  Google Scholar 

  • Lau OS, Deng XW (2012) The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci 17:584–593

    Article  PubMed  CAS  Google Scholar 

  • Lau OS, Huang X, Charron JB, Lee JH, Li G, Deng XW (2011) Interaction of Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock. Mol Cell 43:703–712

    Article  PubMed  CAS  Google Scholar 

  • Leivar P, Quail PH (2011) PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 16:19–28

    Article  PubMed  CAS  Google Scholar 

  • Leivar P, Tepperman JM, Monte E, Calderon RH, Liu TL, Quail PH (2009) Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell 21:3535–3553

    Article  PubMed  CAS  Google Scholar 

  • Lingard MJ, Gidda SK, Bingham S, Rothstein SJ, Mullen RT, Trelease RN (2008) Arabidopsis PEROXIN11c-e, FISSION1b, and DYNAMIN-RELATED PROTEIN3A cooperate in cell cycle-associated replication of peroxisomes. Plant Cell 20:1567–1585

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Liu B, Zhao C, Pepper M, Lin C (2011) The action mechanisms of plant cryptochromes. Trends Plant Sci 16:684–691

    Article  PubMed  CAS  Google Scholar 

  • Lozano-Juste J, León J (2010) Enhanced abscisic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis. Plant Physiol 152:891–903

    Article  PubMed  CAS  Google Scholar 

  • Lozano-Juste J, León J (2011) Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. Plant Physiol 156:1410–1423

    Article  PubMed  CAS  Google Scholar 

  • Mitsuya S, El-Shami M, Sparkes IA, Charlton WL, Lousa Cde M, Johnson B, Baker A (2010) Salt stress causes peroxisome proliferation, but inducing peroxisome proliferation does not improve NaCl tolerance in Arabidopsis thaliana. PLoS One 5:e9408

    Article  PubMed  Google Scholar 

  • Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sánchez-Serrano JJ, Roubelakis-Angelakis KA (2008) Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol 147:1845–1857

    Article  PubMed  CAS  Google Scholar 

  • Nayidu NK, Wang L, Xie W, Zhang C, Fan C, Lian X, Zhang Q, Xiong L (2008) Comprehensive sequence and expression profile analysis of PEX11 gene family in rice. Gene 412:59–70

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Chory J (1998) Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol 118:27–35

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Fankhauser C, Chory J (2000) Light: an indicator of time and place. Genes Dev 14: 257–271

    PubMed  CAS  Google Scholar 

  • Nezames CD, Deng XW (2012) The COP9 signalosome: its regulation of cullin-based E3 ubiquitin ligases and role in photomorphogenesis. Plant Physiol 160:38–46

    Article  PubMed  CAS  Google Scholar 

  • Nila AG, Sandalio LM, López MG, Gómez M, del Río LA, Gómez-Lim MA (2006) Expression of a peroxisome proliferator-activated receptor gene (xPPARalpha) from Xenopus laevis in tobacco (Nicotiana tabacum) plants. Planta 224:569–581

    Article  PubMed  CAS  Google Scholar 

  • Oksanen E, Haikio E, Sober J, Karnosky DF (2003) Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity. New Phytol 161:791–799

    Article  Google Scholar 

  • Orth T, Reumann S, Zhang X, Fan J, Wenzel D, Quan S, Hu J (2007) The PEROXIN11 protein family controls peroxisome proliferation in Arabidopsis. Plant Cell 19:333–350

    Article  PubMed  CAS  Google Scholar 

  • Palma JM, Garrido M, Rodriguez-Garcia MI, del Río LA (1991) Peroxisome proliferation and oxidative stress mediated by activated oxygen species in plant peroxisomes. Arch Biochem Biophys 287:68–74

    Article  PubMed  CAS  Google Scholar 

  • Pepper AE, Chory J (1997) Extragenic suppressors of the Arabidopsis det1 mutant identify elements of flowering-time and light-response regulatory pathways. Genetics 145:1125–1137

    PubMed  CAS  Google Scholar 

  • Pepper A, Delaney T, Washburn T, Poole D, Chory J (1994) DET1, a negative regulator of light-mediated development and gene expression in Arabidopsis, encodes a novel nuclear-localized protein. Cell 78:109–116

    Article  PubMed  CAS  Google Scholar 

  • Peschke F, Kretsch T (2011) Genome-wide analysis of light-dependent transcript accumulation patterns during early stages of Arabidopsis seedling deetiolation. Plant Physiol 155:1353–1366

    Article  PubMed  CAS  Google Scholar 

  • Peterhansel C, Horst I, Niessen M, Blume C, Kebeish R, Kurkcuoglu S, Kreuzaler F (2010) Photorespiration. Arabidopsis Book/Am Soc Plant Biol, Rockville. doi:10.1199/tab.0130

    Google Scholar 

  • Poppe C, Sweere U, Drumm-Herrel H, Schafer E (1998) The blue light receptor cryptochrome 1 can act independently of phytochrome A and B in Arabidopsis thaliana. Plant J 16:465–471

    Article  PubMed  CAS  Google Scholar 

  • Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber AP, Olsen LJ, Hu J (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143

    Article  PubMed  CAS  Google Scholar 

  • Rocha M, Licausi F, Araujo WL, Nunes-Nesi A, Sodek L, Fernie AR, van Dongen JT (2010) Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiol 152:1501–1513

    Article  PubMed  CAS  Google Scholar 

  • Rucktaschel R, Girzalsky W, Erdmann R (2011) Protein import machineries of peroxisomes. Biochim Biophys Acta 1808:892–900

    Article  PubMed  Google Scholar 

  • Schrader M, Bonekamp NA, Islinger M (2012) Fission and proliferation of peroxisomes. Biochim Biophys Acta. doi:10.1016/j.bbadis.2011.1012.1014

    PubMed  Google Scholar 

  • Schultz CJ, Coruzzi GM (1995) The aspartate aminotransferase gene family of Arabidopsis encodes isoenzymes localized to three distinct subcellular compartments. Plant J 7:61–75

    Article  PubMed  CAS  Google Scholar 

  • Shimada H, Ohno R, Shibata M, Ikegami I, Onai K, Ohto MA, Takamiya K (2005) Inactivation and deficiency of core proteins of photosystems I and II caused by genetical phylloquinone and plastoquinone deficiency but retained lamellar structure in a T-DNA mutant of Arabidopsis. Plant J 41:627–637

    Article  PubMed  CAS  Google Scholar 

  • Sinclair AM, Trobacher CP, Mathur N, Greenwood JS, Mathur J (2009) Peroxule extension over ER defined paths constitutes a rapid subcellular response to hydroxyl stress. Plant J 59:231–242

    Article  PubMed  CAS  Google Scholar 

  • Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:1544–6115

    Google Scholar 

  • Tonon C, Cecilia Terrile M, José Iglesias M, Lamattina L, Casalongue C (2010) Extracellular ATP, nitric oxide and superoxide act coordinately to regulate hypocotyl growth in etiolated Arabidopsis seedlings. J Plant Physiol 167:540–546

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Deng XW (2003) Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci 8:172–178

    Article  PubMed  CAS  Google Scholar 

  • Warnes G, Bolker B, Lumley T (2011) gplots: Various R programming tools for plotting data. R package version 2.11.0. http://cran.r-project.org/web/packages/gplots/index.html

  • Weitbrecht K, Muller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62:3289–3309

    Article  PubMed  CAS  Google Scholar 

  • Widhalm JR, Ducluzeau AL, Buller NE, Elowsky CG, Olsen LJ, Basset GJ (2012) Phylloquinone (vitamin K(1)) biosynthesis in plants: two peroxisomal thioesterases of lactobacillales origin hydrolyze 1,4-dihydroxy-2-naphthoyl-coa. Plant J 71:205–215

    Article  PubMed  CAS  Google Scholar 

  • Wimalasekera R, Tebartz F, Scherer GF (2011a) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181:593–603

    Article  PubMed  CAS  Google Scholar 

  • Wimalasekera R, Villar C, Begum T, Scherer GF (2011b) COPPER AMINE OXIDASE1 (CuAO1) of Arabidopsis thaliana contributes to abscisic acid- and polyamine-induced nitric oxide biosynthesis and abscisic acid signal transduction. Mol Plant 4:663–678

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Liu H, Klejnot J, Lin C (2010) The cryptochrome blue light receptors. The Arabidopsis Book 8. doi:10.1199/tab.0135

  • Zemojtel T, Fröhlich A, Palmieri MC, Kolanczyk M, Mikula I, Wyrwicz LS, Wanker EE, Mundlos S, Vingron M, Martasek P, Durner J (2006) Plant nitric oxide synthase: a never-ending story? Trends Plant Sci 11:526–527

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Jin Chen for help with heatmap generation and Meng Chen for comments on this manuscript. Work in the Hu lab was supported by grants from the National Science Foundation (MCB 0618335) and the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DE-FG02-91ER20021) to JH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kaur, N., Li, J., Hu, J. (2013). Peroxisomes and Photomorphogenesis. In: del Río, L. (eds) Peroxisomes and their Key Role in Cellular Signaling and Metabolism. Subcellular Biochemistry, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6889-5_11

Download citation

Publish with us

Policies and ethics