Skip to main content

Purposive-Rational Tumor Therapy: Exploiting the Tumor’s ‘Living World’ for Diversifying, Specifying and Personalizing Tumor Therapy

  • Chapter
  • First Online:
Evolution-adjusted Tumor Pathophysiology:

Abstract

Evolution-adjusted tumor pathophysiology introduces the view of systems participators to assess evolutionarily constrained validities and denotations of systems participators, and contrasts with the manacle of the classic disciplines, pathology and pathophysiology, which provide the view of observers. The differential perspective of communicative interaction applied by an evolution-adjusted tumor pathophysiology (1) involves the comprehension of tumor’s systems features at diagnosis by accentuating the communicative aspects of a situation’s analysis, (2) allows situating identity and function of systems participators as systems subjects during therapies modulating communication, (3) facilitates to describe the tumor’s ‘living world’ comprising (all) endogenously or therapeutically redeemable validity claims and denotations of systems objects, (4) contributes to select and specify purposive aspects at diagnosis and during therapy to pragmatically configure and modulate available evolutionary based rationalization processes of normative notions (theranostics), and (5) affects the technologies to interfere with communication based pathologies in a tumor (adaptive trial designs). Evolution-adjusted tumor pathophysiology provides contently and methodologically novel approaches to succeed in personalizing tumor therapy, and should be introduced as clinically orientated discipline, equivalent with traditional disciplines, thereby increasing their value and accomplishing ethical demands. A tumor type-specific, systems stage-specific, metastatic site-specific or disease trait-orientated therapy seems to be within grasp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ding Z, Wu CJ, Chu GC et al (2011) SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 470(7333):269–273

    Article  PubMed  CAS  Google Scholar 

  2. Breitkreutz D, Hlatky L, Rietman E, Tuszynski JA (2012) Molecular signaling network complexity is correlated with cancer patient survivability. Proc Natl Acad Sci U S A 109(23):9209–9212

    Article  PubMed  CAS  Google Scholar 

  3. Reichle A (2010) Bridging theory and therapeutic practice: from generalized disease models to particular patients. In: From molecular to modular tumor therapy. The tumor microenvironment, vol 3, part 6. Springer, pp 405–431. doi: 10.1007/978-90-481-9531-2_21

    Google Scholar 

  4. Pitteri SJ, Kelly-Spratt KS, Gurley KE et al (2011) Tumor microenvironment-derived proteins dominate the plasma proteome response during breast cancer induction and progression. Cancer Res 71(15):5090–5100

    Article  PubMed  CAS  Google Scholar 

  5. Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, Kobor MS (2012) Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci U S A 109(Suppl 2):17253–17260

    Article  PubMed  CAS  Google Scholar 

  6. Kiessling F, Lederle W (2010) Early detection of systems response: molecular and functional imaging of angiogenesis. In: Reichle A (ed) From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 6. Springer, pp 385–403. doi:10.1007/978-90-481-9531-2_20

    Google Scholar 

  7. Reichle A, Hildebrandt GC (2010) The comparative uncovering of tumor systems biology by modularly targeting tumor-associated inflammation. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 4. Springer, pp 287–303. doi:10.1007/978-90-481-9531-2_13

    Google Scholar 

  8. Reichle A (2010) To be an object in a biological system: the necessity of a formal-pragmatic communication theory. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 9. Springer, pp 537–544. doi:10.1007/978-90-481-9531-2_26

    Google Scholar 

  9. Reichle A (2010) From molecular to modular, from theme-dependent to evolution-adjusted tumor therapy. In: From molecular to modular tumor therapy. The tumor microenvironment, vol 3, part 7. Springer, pp 467–489. doi:10.1007/978-90-481-9531-2_27. 223

    Google Scholar 

  10. Goossens MC, De GJ (2010) Individual cancer risk as a function of current age and risk profiles. Eur J Cancer Prev 19(6):485–495

    Article  PubMed  CAS  Google Scholar 

  11. Winter C, Kristiansen G, Kersting S et al (2012) Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes. PLoS Comput Biol 8(5):e1002511

    Article  PubMed  CAS  Google Scholar 

  12. Markert EK, Mizuno H, Vazquez A, Levine AJ (2011) Molecular classification of prostate cancer using curated expression signatures. Proc Natl Acad Sci U S A 108(52):21276–21281

    Article  PubMed  CAS  Google Scholar 

  13. Planche A, Bacac M, Provero P et al (2011) Identification of prognostic molecular features in the reactive stroma of human breast and prostate cancer. PLoS One 6(5):e18640

    Article  PubMed  CAS  Google Scholar 

  14. Swartz MA, Iida N, Roberts EW et al (2012) Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res 72(10):2473–2480

    Article  PubMed  CAS  Google Scholar 

  15. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767

    Article  PubMed  CAS  Google Scholar 

  16. Ahnen DJ (2011) The American college of fastroenterology emily couric lecture–the adenoma-carcinoma sequence revisited: has the era of genetic tailoring finally arrived? Am J Gastroenterol 106(2):190–198

    Article  PubMed  Google Scholar 

  17. Marcucci G, Haferlach T, Dohner H (2011) Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol 29(5):475–486

    Article  PubMed  CAS  Google Scholar 

  18. Nik-Zainal S et al (2012) The life history of 21 breast cancers. Cell [epub ahead of print]

    Google Scholar 

  19. Ram PT, Mendelsohn J, Mills GB (2012) Bioinformatics and systems biology. Mol Oncol 6(2):147–154

    Article  PubMed  CAS  Google Scholar 

  20. Yang Y, Adelstein SJ, Kassis AI (2011) Integrated bioinformatics analysis for cancer target identification. Methods Mol Biol 719:527–545

    Article  PubMed  CAS  Google Scholar 

  21. Reichle A, Hildebrandt GC (2009) Principles of modular tumor therapy. Cancer Microenviron 2(Suppl 1):227–237

    Article  PubMed  Google Scholar 

  22. Feng GS (2012) Conflicting roles of molecules in hepatocarcinogenesis: paradigm or paradox. Cancer Cell 21(2):150–154

    Article  PubMed  CAS  Google Scholar 

  23. Perkins ND (2012) The diverse and complex roles of NF-kappaB subunits in cancer. Nat Rev Cancer 12(2):121–132

    PubMed  CAS  Google Scholar 

  24. Russo A, Iacobelli S, Iovanna J (eds.) (2012) Diagnostic, prognostic and therapeutic value of gene signatures. Dordrecht: Springer, 2012. ISBN: 978-1-61779-357-8 (Print) 978-1-61779-358-5 (Online)

    Google Scholar 

  25. Schwartz MA, Lida N, Roberts EW et al (2012) Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res [Epub ahead]

    Google Scholar 

  26. Chung AS, Kowanetz M, Wu X et al (2012) Differential drug class-specific metastatic effects following treatment with a panel of angiogenesis inhibitors. J Pathol 227(4):404–416

    Article  PubMed  CAS  Google Scholar 

  27. Sitohy B, Nagy JA, Jaminet SC, Dvorak HF (2011) Tumor-surrogate blood vessel subtypes exhibit differential susceptibility to anti-VEGF therapy. Cancer Res 71(22):7021–7028.

    Article  PubMed  CAS  Google Scholar 

  28. Reichle A, Vogt T (2008) Systems biology: a therapeutic target for tumor therapy. Cancer Microenviron 1(1):159–170

    Article  PubMed  Google Scholar 

  29. Moch H, Blank PR, Dietel M et al (2012) Personalized cancer medicine and the future of pathology. Virchows Arch 460(1):3–8

    Article  PubMed  CAS  Google Scholar 

  30. Dancey JE, Bedard PL, Onetto N, Hudson TJ (2012) The genetic basis for cancer treatment decisions. Cell 148(3):409–420

    Article  PubMed  CAS  Google Scholar 

  31. Corless CL (2011) Medicine. Personalized cancer diagnostics. Science 334(6060):1217–1218

    Article  PubMed  CAS  Google Scholar 

  32. Longo DL (2012) Tumor heterogeneity and personalized medicine. N Engl J Med 366(10):956–957

    Article  PubMed  CAS  Google Scholar 

  33. Gasparini G, Longo R (2012) The paradigm of personalized therapy in oncology. Expert Opin Ther Targets 16(Suppl 1):S7–16

    Article  Google Scholar 

  34. Reichle A (2010) Uncovering tumor systems biology by biomodulatory therapy strategies. In: From molecular to modular tumor therapy. The tumor microenvironment, vol 3, part 4. Springer, pp 287–303. doi:10.1007/978-90-481-9531-2_13

    Google Scholar 

  35. Reichle A (2009) Tumor systems need to be rendered usable for a new action-theoretical abstraction: The starting point for novel therapeutic options. Curr Cancer Ther Rev 5:232–242

    Article  CAS  Google Scholar 

  36. Sun Y, Nelson PS (2012) Molecular pathways: involving microenvironment damage responses in cancer therapy resistance. Clin Cancer Res 18(15):4019–4025

    Article  PubMed  CAS  Google Scholar 

  37. Deininger M, Buchdunger E, Druker BJ (2005) The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105(7):2640–2653

    Article  PubMed  CAS  Google Scholar 

  38. Dotan E, Aggarwal C, Smith MR (2010) Impact of Rituximab (Rituxan) on the treatment of B-Cell Non-Hodgkin’s Lymphoma. P T 35(3):148–157

    PubMed  Google Scholar 

  39. Mano H (2012) ALKoma: a cancer subtype with a shared target. Cancer Discov 2(6):495–502

    Article  PubMed  CAS  Google Scholar 

  40. Klinger M, Brandl C, Zugmaier G et al (2012) Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 119(26):6226–6233

    Article  PubMed  CAS  Google Scholar 

  41. Topp M, Goekbuget N et al (2012) Effect of anti-CD19 BiTE blinatumomab on complete remission rate and overall survival in adult patients with relapsed/refractory B-precursor ALL. J Clin Oncol 30(suppl; abstr 6500)

    Google Scholar 

  42. Ajani J (2006) Review of capecitabine as oral treatment of gastric, gastroesophageal, and esophageal cancers. Cancer 107(2):221–231

    Article  PubMed  CAS  Google Scholar 

  43. Morant R, Bernhard J, Dietrich D et al (2004) Capecitabine in hormone-resistant metastatic prostatic carcinoma—a phase II trial. Br J Cancer 90(7):1312–1317

    Article  PubMed  CAS  Google Scholar 

  44. De PM, Hanahan D (2012) The biology of personalized cancer medicine: facing individual complexities underlying hallmark capabilities. Mol Oncol 6(2):111–127

    Article  Google Scholar 

  45. Kvinlaug BT, Chan WI, Bullinger L et al (2011) Common and overlapping oncogenic pathways contribute to the evolution of acute myeloid leukemias. Cancer Res 71(12):4117–4129

    Article  PubMed  CAS  Google Scholar 

  46. Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136(5):823–837

    Article  PubMed  CAS  Google Scholar 

  47. Lin C, Yang L, Tanasa B et al (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139(6):1069–1083

    Article  PubMed  CAS  Google Scholar 

  48. Reichle A, Vogt T, Hildebrandt GC (2010) A methodological approach to personalized therapies in metastatic cancer. In: Reichle A (ed) From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 8. Springer, pp 507–33. doi:10.1007/978-90-481-9531-2_25

    Google Scholar 

  49. Diaz DM, Hernandez A, Pereira GS, Virizuela E (2011) Gastrointestinal stromal tumors: morphological, immunohistochemical and molecular changes associated with kinase inhibitortherapy. Pathol Oncol 3:455–461

    Article  Google Scholar 

  50. Berry DA (2012) Adaptive clinical trials in oncology. Nat Rev Clin Oncol 9(4):199–207

    Article  CAS  Google Scholar 

  51. Oprea TI, Bauman JE, Bologa CG et al (2011) Drug repurposing from an academic perspective. Drug Discov Today Ther Strateg 8(3–4):61–69

    Article  PubMed  Google Scholar 

  52. Bundscherer A, Hafner C (2010) Breathing new life into old drugs: indication discovery by systems directed therapy. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 7. Springer, pp 483–503. doi:10.1007/978-90-481-9531-2_24

    Google Scholar 

  53. Emmenegger U et al (2010) The biomodulatory capacities of low-dose metronomic chemotherapy: complex modulation of the tumor microenvironment. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 3. Springer pp 243–262. doi:10.1007/978-90-481-9531-2_11

    Google Scholar 

  54. Beck IME, Haegemann G, de Bosscher K (2010) Molecular cross-talk between nuclear receptors and nuclear factor-NFkappaB. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 3. Springer, pp 191–242. doi:10.1007/978-90-481-9531-2_10

    Google Scholar 

  55. Walter B, Rogenhofer S, Vogelhuber M et al (2010) Modular therapy approach in metastatic castration-refractory prostate cancer. World J Urol 28(6):745–750

    Article  PubMed  CAS  Google Scholar 

  56. Reichle A, Vogelhuber M, Feyerabend S et al (2011) A phase II study of imatinib with pioglitazone, etoricoxib, dexamethasone, and low-dose treosulfan: Combined anti-inflammatory, immunomodulatory, and angiostatic treatment in patients (pts) with castration-refractory prostate cancer (CRPC). J Clin Oncol 29(suppl; abstr 4599)

    Google Scholar 

  57. Mayr E (1982) The growth of biological thougt. Harvard University Press, Cambridge

    Google Scholar 

  58. Gatenby RA, Gillies RJ, Brown JS (2011) Of cancer and cave fish. Nat Rev Cancer 11(4):237–238

    Article  PubMed  CAS  Google Scholar 

  59. Maitland ML, Schilsky RL (2011) Clinical trials in the era of personalized oncology. CA Cancer J Clin 61(6):365–381

    Article  PubMed  Google Scholar 

  60. Heinz S, Benner C, Spann N et al (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38(4):576–589

    Article  PubMed  CAS  Google Scholar 

  61. Bachelot T, Bourgier C, Cropet C et al (2012) Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study. J Clin Oncol 30(22):2718–2724

    Article  PubMed  CAS  Google Scholar 

  62. Zinzani PL, Pellegrini C, Gandolfi L et al (2011) Combination of lenalidomide and rituximab in elderly patients with relapsed or refractory diffuse large B-cell lymphoma: a phase 2 trial. Clin Lymphoma Myeloma Leuk 11(6):462–466

    Article  PubMed  CAS  Google Scholar 

  63. Nash PD (2012) Why modules matter. FEBS Lett 586(17):2572–2574

    Article  PubMed  CAS  Google Scholar 

  64. Haura EB (2012) From modules to medicine: how modular domains and their associated networks can enable personalized medicine. FEBS Lett 586(17):2580–2585

    Article  PubMed  CAS  Google Scholar 

  65. Beckman RA, Schemmann GS, Yeang CH (2012) Impact of genetic dynamics and single-cell heterogeneity on development of nonstandard personalized medicine strategies for cancer. Proc Natl Acad Sci U S A 109(36):14586–14591

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht Reichle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Reichle, A., Hildebrandt, G. (2013). Purposive-Rational Tumor Therapy: Exploiting the Tumor’s ‘Living World’ for Diversifying, Specifying and Personalizing Tumor Therapy. In: Reichle, A. (eds) Evolution-adjusted Tumor Pathophysiology:. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6866-6_15

Download citation

Publish with us

Policies and ethics