Management of Evaporation Basins To Reduce and Avoid Adverse Impacts to Waterbirds

  • Douglas E. DavisEmail author
  • Charles H. Hanson
Part of the Global Issues in Water Policy book series (GLOB, volume 5)


Shorebirds and waterfowl are attracted to the evaporation basins actively foraging and nesting there, and are therefore exposed to naturally occurring trace elements in drainage water resulting in increased mortality, reduced growth, impaired reproduction, and reductions in species abundance. American avocet and black-necked stilts were identified as the waterbirds at greatest risk of adverse impacts. The provisions taken by the Tulare Lake Drainage District to modify operations of the existing systems and establish compensation wetland habitats demonstrated that evaporation ponds might be operated in an ecologically safe manner.


Evaporation Pond Diving Duck Agricultural Drainage Water Migratory Waterbird Ruddy Duck 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, W. J., Brix, K. B., Cothern, K. A., Tear, L. M., Cardwell, R. D., Fairbrother, A., & Toll, J. E. (1998). Assessment of selenium food chain transfer and critical exposure factors for avian wildlife species: Need for site-specific data. In E. E. Little, A. J. DeLonay, & B. M. Greenburg (Eds.), Environmental toxicology and risk assessment (ASTM STP 1333, Vol. 7, pp. 312–342). West Conshohocken: American Society for Testing and Materials.Google Scholar
  2. Adams, W. J., Toll, J. E., Brix, K. B., Tear, L. M., & DeFrost, D. K. (2000, June 21–22). Site-specific approach for setting water quality criteria for Selenium: Difference between lotic and lentic systems. In Proceedings mine reclamation symposium: Selenium session. Sponsored by B.C. Ministry of Energy and Mines, Williams Lake.Google Scholar
  3. Adams, W. J., Brix, K. B., Edwards, M., Tear, L. M., DeFrost, D. K., & Fairbrother, A. (2003). Analysis of field and laboratory data to derive selenium toxicity thresholds for birds. Environmental Toxicology and Chemistry, 22, 2020–2029.CrossRefGoogle Scholar
  4. Barnum, D. A. (1992). Impacts of evaporation ponds on wintering and migrating waterfowl and shorebirds (Memorandum dated September 2, 1992, to the Chief, 14 pp). Dixon: Section of Pacific States Ecology, Northern Prairie Wildlife Research Center, U.S. Fish and Wildlife Service.Google Scholar
  5. Barnum, D. A. (1994). Low selenium in waterfowl wintering at Kern National Wildlife Refuge (National Biological Survey Information Bulletin No. 25). Fort Collins: U.S. Department of the Interior.Google Scholar
  6. Beckon, W. N., & Maurer, T. C. (2008). Potential effects of selenium contamination on federally-listed species resulting from delivery of federal water to the San Luis Unit. Report prepared by U.S. Fish and Wildlife Service, Sacramento Fish and Wildlife Office, Environmental Contaminants Division, 2800 Cottage Way, Room W-2605, Sacramento, California 95825–1846 for U. S. Bureau of Reclamation.Google Scholar
  7. CH2MHill, H.T. Harvey and Associates, & Horner, G. L. (1993). Cumulative impacts of agriculture evaporation basins on wildlife. Sacramento: Prepared for California Department of Water Resources.Google Scholar
  8. CWA (California Waterfowl Association). (2005). Principles of wetland management. Accessed June 2012.
  9. Davis, D. E., Hanson, C. H., & Hansen, R. B. (2008). Constructed wetland habitat for American avocet and black-necked stilt foraging and nesting. Journal of Wildlife Management, 72(1), 143–151.CrossRefGoogle Scholar
  10. DeFrost, K. D., Brix, K. B., & Adams, W. J. (1999). Critical review of proposed residue-based selenium toxicity thresholds for freshwater fish. Human and Ecological Risk Assessment, 5, 1187–1228.CrossRefGoogle Scholar
  11. Eldridge, J. (1990). Aquatic invertebrates important for waterfowl production (Fish and wildlife leaflet 13.3.3. U.S. Fish and wildlife service waterfowl management handbook). Madison: National Wildlife Health Research Center. 6 pp.Google Scholar
  12. Euliss, N. H., Jr., Jarvis, R. L., & Gilmer, D. S. (1989). Carbonate deposition on tail feathers of ruddy ducks using evaporation ponds. The Condor, 91, 803–806.CrossRefGoogle Scholar
  13. Fairbrother, A., Brix, K. B., Toll, J. E., McKay, S., & Adams, W. J. (1999). Egg selenium concentrations as predictors of avian toxicity. Human and Ecological Risk Assessment, 5(6), 1229–1253.CrossRefGoogle Scholar
  14. Fairbrother, A., Brix, K. V., DeForest, D. K., & Adams, W. J. (2000). Egg selenium thresholds for birds: A response to J. Skorupa’s critique of Fairbrother et al., 1999. Human and Ecological Risk Assessment, 6(1), 203–212.CrossRefGoogle Scholar
  15. Gordus, A. G., Shivaprasad, H. L., & Swift, P. K. (2002). Salt toxicosis in ruddy ducks that winter on an agricultural evaporation basin in California. Journal of Wildlife Diseases, 38(1), 124–131.CrossRefGoogle Scholar
  16. Hanson, C. (1995). Testimony of Dr. Charles Hanson to the California state water resources control board in response to petitions regarding Tulare lake evaporation ponds. Walnut Creek: Hanson Environmental, Inc.Google Scholar
  17. Hanson Environmental, Inc. (1993, June). Tulare Lake Drainage District North, Hacienda, and South evaporation basins – Kings County site-specific biological impact analysis and response to comments. Prepared for California Regional Water Quality Control Board, Central Valley Region. Walnut Creek: Hanson Environmental, Inc.Google Scholar
  18. Heinz, G. H., Pendelton, G. W., Krynitsky, A. J., & Gold, L. G. (1990). Selenium accumulation and elimination in mallards. Archives of Environmental Contamination and Toxicology, 19, 374–379.CrossRefGoogle Scholar
  19. Higashi, R. M., Cassel, T. A., Skorupa, J. P., & Fan, T. W.-M. (2005). Remediation and bioremediation of selenium contaminated waters. In J. H. Lehr & J. Keeley (Eds.), Water encyclopedia: Water quality and resource development (pp. 355–360). Hoboken: Wiley.Google Scholar
  20. Hoffman, D. J., & Heinz, G. H. (1988). Embryotoxic and teratogenic effects of selenium in the diet of mallards. Journal of Toxicology and Environmental Health, 24, 477–490.CrossRefGoogle Scholar
  21. Hothem, R. L. (1989). Reproductive success of birds in the grasslands, 1986. Selenium and agricultural drainage: Implications for San Francisco Bay and the California environment. In A. D. Howard (Ed.), Proceedings of the selenium symposium. San Francisco: Bay Institute.Google Scholar
  22. Maier, K. J., & Knight, A. W. (1994). Ecotoxicology of selenium in freshwater systems. Reviews in environmental toxicology, 134, 31–48.Google Scholar
  23. Mayer, P. M., & Ryan, M. R. (1991). Electric fences reduce mammalian predation on piping plover nests and chicks. Wildlife Society Bulletin, 19, 9–63.Google Scholar
  24. Miller, O. D., Wilson, J. A., Ditchkoff, S. S., & Lochmiller, R. L. (2000). Consumption of agricultural and natural foods by waterfowl migrating through central Oklahoma. Proceedings of the Oklahoma Academy of Sciences, 80, 25–31.Google Scholar
  25. Mitcham, S. A., & Wobeser, G. (1988). Effects of sodium and magnesium sulfate in drinking water on mallard ducklings. Journal of Wildlife Diseases, 24, 30–44.CrossRefGoogle Scholar
  26. Ohlendorf, H. M. (2003). Ecotoxicology of selenium. In D. J. Hoffman, B. A. Rattner, G. A. Burton Jr., & J. Cairns Jr. (Eds.), Handbook of ecotoxicology (2nd ed., pp. 465–500). Boca Raton: Lewis Publishers.Google Scholar
  27. Ohlendorf, H. M., & Santolo, G. M. (1994). Kesterson reservoir – Past, present, and future: An ecological risk assessment. In W. T. Frankenberger Jr. & S. Benson (Eds.), Selenium in the environment (pp. 69–118). New York: Marcel Dekker.Google Scholar
  28. Ohlendorf, H. M., Kilness, A. W., Simmons, J. L., Stroud, R. K., Hoffman, D. J., & Moore, J. F. (1988). Selenium toxicosis in wild aquatic birds. Journal of Toxicology and Environmental Health, 24, 67–92.CrossRefGoogle Scholar
  29. Ohlendorf, H. M., Skorupa, J. P., Saiki, M. R., & Barnum, D. A. (1993, July 21–23). Food-chain transfer of trace elements to wildlife. In R. G. Allen & C. M. U. Neale (Eds.), Management of irrigation and drainage systems: Integrated perspectives. Proceedings of the 1993 national conference on irrigation and drainage engineering (pp. 596–803). New York: American Society of Civil Engineers.Google Scholar
  30. Parametrix, Inc. (2002). Analysis of field and laboratory data to derive selenium toxicity thresholds for birds. Draft report prepared for Kennecott Utah Copper Corporation. Kirkland: Parametrix, Inc.Google Scholar
  31. Paveglio, F. L., Kilbride, K. M., & Heinz, H. (1992). Selenium and boron in aquatic birds from central California. Journal of Wildlife Management, 56, 31–42.CrossRefGoogle Scholar
  32. Paveglio, F. L., Kilbride, K. M., & Bunck, C. M. (1997). Selenium in aquatic birds from Central California. Journal of Wildlife Management, 63, 832–839.CrossRefGoogle Scholar
  33. Skorupa, J. P. (1998). Selenium poisoning of fish and wildlife in nature: Lessons learned from 12 real-world examples. In W. T. Frankenberger Jr. & R. A. Engberg (Eds.), Environmental chemistry of selenium (pp. 315–354). New York: Marcel Dekker.Google Scholar
  34. Skorupa, J. P., & Ohlendorf, H. M. (1991). Contaminants in drainage water and avian risk thresholds. In A. Diner & D. Zilberman (Eds.), The economics and management of water and drainage in agriculture (pp. 345–368). Boston: Kluwer Academics.CrossRefGoogle Scholar
  35. SRCD (Suisun Resources Conservation District). (1998). Individual ownership adaptive management habitat plan. Suisun: Suisun Resources Conservation District. 99 pp.Google Scholar
  36. Swanson, G. A. (1988). Aquatic habitats of breeding waterfowl. In D. D. Hook, W. H. McKee, H. K. Smith, & J. Gregory (Eds.), Ecology and management of wetlands (Ecology of wetlands, Vol. 1, pp. 195–202). Portland: Timber Press. 592 pp.CrossRefGoogle Scholar
  37. Swanson, G. A., Adomaitis, V. A., Lee, F. B., Serie, J. R., & Shoesmith, J. A. (1984). Limnological conditions influencing duckling use of saline lakes in south-central North Dakota. Journal of Wildlife Management, 48, 340–349.CrossRefGoogle Scholar
  38. TLDD (Tulare Lake Drainage District). (1997, July). Performance assessment of mitigation actions implemented at the Tulare Lake Drainage District evaporation basins: 1993–1996 technical report. Prepared for California Regional Water Quality Control Board, Central Valley Region. Prepared by Hansen’s Biological Consulting, Hanson Environmental, Inc., and Tulare Lake Drainage District.Google Scholar
  39. USFWS (U.S. Fish and Wildlife Service). (1995). Compensation habitat protocol for drain water evaporation basins. Sacramento: USFWS Environmental Contaminants Office.Google Scholar
  40. Wobeser, G., & Howard, J. (1987). Mortality of waterfowl on a hypersaline wetland as a result of salt encrustation. Journal of Wildlife Diseases, 23, 127–134.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.CorcoranUSA
  2. 2.Hanson Environmental, Inc.Walnut CreekUSA

Personalised recommendations