Chemical and Biological Processes of Evaporation Ponds

  • Suduan GaoEmail author
  • Andrew C. Chang
Part of the Global Issues in Water Policy book series (GLOB, volume 5)


Evaporation ponds were growers’ stopgap measures to continue production when the Kesterson Reservoir no longer accepted tile drainages from irrigated croplands in the west side of San Joaquin Valley. At its peak, there were 3,000 ha of evaporation ponds serving. The pond operation had to comply with federal and state hazardous wastes disposal regulations and prevent selenium build up. As the spent water flowed through evaporation ponds, it underwent continued changes in temperature, pH, dissolved oxygen levels, and dissolved organic carbon contents triggering complex chemical reactions. The evapo-concentrating processes resulted in precipitation of minerals primarily halite, thenardite, mirabilite and other evaporates, and elevated concentration of trace elements in water including arsenic, boron, molybdenum, uranium, and vanadium. The pond supported a thriving aquatic eco community in which selenium bioaccumulated through the food chain. Invertebrate brine shrimps occupy a critical middle link and aid in trophic transfer of selenium. The flow of selenium along the aquatic food chain might be interrupted by harvesting brine shrimps preventing the mass of accumulated selenium from reach the higher trophic organisms.


Drainage Water Pond Water Brine Shrimp Evaporation Pond Agricultural Drainage Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amrhein, C., Mosher, P. A., & Brown, A. D. (1993). The effects of redox on Mo, U, B, V, and As solubility in evaporation pond soils. Soil Science, 155, 249–255.CrossRefGoogle Scholar
  2. Amrhein, C., Duff, M. C., Casey, W. H., & Westcot, D. W. (1998). Emerging problems with uranium, vanadium, molybdenum, chromium and boron. In L. M. Dudley & J. C. Guitjens (Eds.), Agroecosystems and the environment: Sources, control, and remediation of potentially toxic, trace element oxyanions (pp. 39–56). San Francisco: Pacific Division of the American Association for the Advancement of Sciences.Google Scholar
  3. Amweg, E. L., Stuart, D. L., & Weston, D. P. (2003). Comparative bioavailability of selenium to aquatic organisms after biological treatment of agricultural drainage water. Aquatic Toxicology, 63, 13–25.CrossRefGoogle Scholar
  4. Anderson, L., & Bruland, C. D. (1991). Biogeochemistry of arsenic in natural waters: The importance of methylated species. Environmental Science and Technology, 25, 420–427.CrossRefGoogle Scholar
  5. Benson, S. M., Daggett, J., & Zawislanski P. (1999). Field-measured oxidation rates of biologically reduced selenium in sludge. In W. W. Wenzel, D. C. Adriano, B. Alloway, H. E. Doner, C. Keller, N. W. Lepp, M. Mench, R. Naidu, & G. M. Pierzynski (Eds.), Proceedings of the 5th annual international conference on the biogeochemistry of trace elements, July 1999 Vienna, Austria (Report No. LBNL-44164). Berkeley: Lawrence Berkeley National Laboratory.Google Scholar
  6. Brusseau, M. L., & Miller, R. M. (1996). Remediation. In I. L. Peter, C. P. Gerba, & M. L. Brusseau (Eds.), Pollution science. San Diego: Academic.Google Scholar
  7. Chilcott, J. E., & McVay, L. A. (1993). Sediment quality in evaporation basins used for the disposal of agricultural subsurface drainage water in the San Joaquin Valley, California: 1990–1991 (Report). Sacramento: California Central Valley Regional Water Quality Control Board.Google Scholar
  8. Chilcott, J. E., Westcot, D. W., Johnson, S. D., & Toto, A. L. (1993). Water quality in evaporation basins used for the disposal of agricultural subsurface drainage water in the San Joaquin Valley, California: 1990–1991 (Report). Sacramento: California Central Valley Regional Water Quality Control Board.Google Scholar
  9. CIMIS (California Irrigation Management Information System). (1999). Reference evapotranspiration map. Sacramento: California Department of Water Resources.Google Scholar
  10. Cooke, T. D., & Bruland, K. W. (1987). Aquatic chemistry of selenium: Evidence of biomethylation. Environmental Science and Technology, 21, 1214–1219.CrossRefGoogle Scholar
  11. Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical Reviews, 89, 713–764.CrossRefGoogle Scholar
  12. Duff, M. C., Amrhein, C., & Bradford, G. (1997a). Nature of uranium contamination in the agricultural drainage water evaporation ponds of the San Joaquin Valley, California, USA. Canadian Journal of Soil Science, 77, 459–467.CrossRefGoogle Scholar
  13. Duff, M. C., Amrhein, C., Bertsch, P. M., & Hunter, D. B. (1997b). The chemistry of uranium in evaporation pond sediment in the San Joaquin Valley, California, USA, using X-ray fluorescence and XANES techniques. Geochimica et Cosmochimica Acta, 61, 73–81.CrossRefGoogle Scholar
  14. Duff, M. C., Hunter, D. B., Bertsch, P. M., & Amrhein, C. (1999). Factors influencing uranium reduction and solubility in evaporation pond sediments. Biogeochemistry, 45, 95–114.Google Scholar
  15. Dugan, R. S., & Frankenberger, W. T., Jr. (1999). Microbial transformations of selenium and the bioremediation of seleniferous environments. Bioremediation Journal, 3, 171–188.CrossRefGoogle Scholar
  16. Fan, T. W.-M., Lane, A. N., & Higashi, R. M. (1997). Selenium biotransformations by a euryhaline microalga isolated from a saline evaporation pond. Environmental Science and Technology, 31, 569–576.CrossRefGoogle Scholar
  17. Fan, T. W.-M., Higashi, R. M., & Lane, A. W. (1998). Biotransformations of selenium oxyanions by filamentous cyanophyte-dominated mat cultures from agricultural drainage waters. Environmental Science and Technology, 332, 3185–3193.CrossRefGoogle Scholar
  18. Ford, S. (1988). Agricultural drainage evaporation ponds in the San Joaquin Valley – Progress of investigation (Memorandum Report). Sacramento: Department of Water Resources.Google Scholar
  19. Fowler, S. W., & Benayoun, G. (1976). Accumulation-and-distribution-of-selenium-in-mussel-and-shrimp-tissues. Bulletin of Environmental Contamination and Toxicology, 16, 339–346.CrossRefGoogle Scholar
  20. Fox, P. M., & Doner, H. (2002). Trace element retention and release on minerals and soil in a constructed wetland. Journal of Environmental Quality, 31, 331–338.CrossRefGoogle Scholar
  21. Fox, P. M., & Doner, H. E. (2003). Accumulation, release, and solubility of arsenic, molybdenum, and vanadium in wetland sediments. Journal of Environmental Quality, 32, 2428–2435.CrossRefGoogle Scholar
  22. Frankenberger, W. T., Jr., & Arshad, M. (2001). Bioremediation of selenium-contaminated sediments and water. BioFactors, 14, 241–254.CrossRefGoogle Scholar
  23. Frankenberger, W. T., Jr., & Karlson, U. (1989). Environmental factors affecting microbial production of dimethylselenide in a selenium-contaminated sediment. Soil Science Society of America Journal, 53, 1435–1442.CrossRefGoogle Scholar
  24. Frankenberger, W. T., Jr., & Karlson, U. (1994). Campaigning for bioremediation. Chemtech, 24, 45–51.Google Scholar
  25. Fujii, R. (1988). Water-quality and sediment-chemistry data of drain water and evaporation ponds from Tulare Lake Drainage District, Kings County, California, March 1985 to March 1995 (U.S. Geological Survey Open-File Report 87-700). Sacramento: U.S. Geological Survey.Google Scholar
  26. Gao, S., Ryu, J., Tanji, K. K., & Herbel, M. J. (2007a). Arsenic accumulation and speciation in evaporating waters of agricultural evaporation basins. Chemosphere, 67, 862–871.CrossRefGoogle Scholar
  27. Gao, S., Tanji, K. K., Dahlgren, R. A., Ryu, J., Herbel, M. J., & Higashi, R. R. (2007b). Chemical status of selenium in evaporation basins for disposal of agricultural drainage. Chemosphere, 69, 585–594.CrossRefGoogle Scholar
  28. Gerhardt, M. B., Oswald, W. J., Green, F. B., Newman, R. D., Lundquist, T. J., Shown, L. J., & Tresan, B. (1991). Removal of selenium using a novel algal-bacterial process. Research Journal of the Water Pollution Control Federation, 63(5), 799–805.Google Scholar
  29. Goldberg, S., Forster, H. S., & Godfrey, C. L. (1996). Molybdenum adsorption on oxides, clay minerals, and soils. Soil Science Society of America Journal, 60, 425–432.CrossRefGoogle Scholar
  30. Grismer, M., Karajeh, E. F., & Bouwer, H. (1993, July 21–23). Evaporation pond hydrology. In R. G. Allen & C. M. U. Neale (Eds.), Management of irrigation and drainage systems: Integrated perspectives. Proceedings of the 1993 national conference on irrigation and drainage engineering, Park City, UT (pp. 580–586). New York: American Society of Civil Engineers.Google Scholar
  31. Hamilton, S. J., & Lemly, A. D. (1999). Water-sediment controversy in setting environmental standards for selenium. Ecotoxicology and Environmental Safety, 44, 227–235.CrossRefGoogle Scholar
  32. Hansen, D., Duda, P. J., Zayed, A., & Terry, N. (1998). Selenium removal by constructed wetlands: Role of biological volatilization. Environmental Science and Technology, 32, 591–597.CrossRefGoogle Scholar
  33. Herbel, M. J., Blum, J. S., Oremland, R. S., & Borglin, S. E. (2003). Reduction of elemental selenium to selenide: Experiments with anoxic sediments and bacteria that respire Se-oxyanions. Geomicrobiology Journal, 20, 587–602.CrossRefGoogle Scholar
  34. Higashi, R. M., Rejmankova, E. J., Gai, S., & Fan, T. W.-M. (2003). Mitigating selenium ecotoxic risk by combining foodchain breakage with natural remediation (Drainage Program Annual Report). Riverside: University of California.Google Scholar
  35. Higashi, R. M., Cassel, T. A., Skorupa, J. P., & Fan, T. W.-M. (2005). Remediation and bioremediation of selenium contaminated waters. In J. H. Lehr & J. Keeley (Eds.), Water encyclopedia: Water quality and resource development (pp. 355–360). Hoboken: Wiley.Google Scholar
  36. Karlson, U., & Frankenberger, W. T., Jr. (1990). Volatilization of selenium from agricultural evaporation pond sediments. Science of the Total Environment, 92, 41–54.CrossRefGoogle Scholar
  37. Lemly, A. D. (1997). Ecosystem recovery following selenium contamination in a freshwater reservoir. Ecotoxicology and Environmental Safety, 36, 275–281.CrossRefGoogle Scholar
  38. Lemly, A. D., Finger, S. E., & Nelson, M. K. (1993). Sources and impacts of irrigation drainage contaminants in arid wetlands. Environmental Toxicology and Chemistry, 12, 2265–2279.CrossRefGoogle Scholar
  39. Luoma, S. N., Johns, C., Fisher, N. S., Steinberg, N. A., Oremland, R. S., & Reinfelder, J. R. (1992). Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways. Environmental Science and Technology, 26, 485–491.CrossRefGoogle Scholar
  40. May, T. W., Walther, M. J., Petty, J. D. J., Fairchild, F., Lucero, J., Delvaux, M., Manring, J., Armbruster, M., & Hartman, D. (2001). An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Republican River Basin: 1997–1999. Environmental Monitoring and Assessment, 72, 179–206.CrossRefGoogle Scholar
  41. Morrissey, C. A., Bendell-Young, L. I., & Elliot, J. E. (2005). Identifying sources and bioaccumulation of persistent organic contaminants in biota from mountain streams of Southwestern British Columbia, Canada. Environmental Science and Technology, 39, 8090–8098.CrossRefGoogle Scholar
  42. Muscatello, J. R., Belknap, A. M., & Janz, D. M. (2008). Accumulation of selenium in aquatic systems downstream of a uranium mining operation in northern Saskatchewan, Canada. Environmental Pollution, 156, 387–393.CrossRefGoogle Scholar
  43. Neumann, P. M., De Souza, M. P., Pickering, I. J., & Terry, N. (2003). Rapid microbial metabolism of selenate to volatile dimethylselenide. Plant, Cell & Environment, 26, 897–905.CrossRefGoogle Scholar
  44. Ohlendorf, H. M., Skorupa, J. P., Saiki, M. K., & Barnum, D. A. (1993, July 21–23). Food-chain transfer of trace elements to wildlife. In R. G. Allen & C. M. U. Neale (Eds.), Management of irrigation and drainage systems: Integrated perspectives. Proceedings of the 1993 national conference on irrigation and drainage engineering, Park City, UT (pp. 596–603). New York: American Society of Civil Engineers.Google Scholar
  45. Ong, C. G., & Tanji, K. K. (1993). Evaporative concentration of trace elements in a multi-cell agricultural evaporation pond. Journal of Agricultural and Food Chemistry, 41, 1507–1510.CrossRefGoogle Scholar
  46. Ong, C. G., Tanji, K. K., Dahlgren, R. A., Smith, G. R., & Quek, A. F. (1995). Water quality and trace element evapoconcentration in evaporation ponds for agricultural waste water disposal. Journal of Agricultural and Food Chemistry, 43, 1941–1947.CrossRefGoogle Scholar
  47. Ong, C. G., Herbel, M. J., Dahlgren, R. A., & Tanji, K. K. (1997). Trace element (Se, As, Mo, B) contamination of evaporites in hypersaline agricultural evaporation ponds. Environmental Science and Technology, 31, 831–836.CrossRefGoogle Scholar
  48. Oremland, R. S., Hollibaugh, J. T., Maest, A. S., Presser, T. S., Miller, L. G., & Culbertson, C. W. (1989). Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: Biogeochemical significance of a novel, sulfate-independent respiration. Applied and Environmental Microbiology, 55, 2333–2343.Google Scholar
  49. Presser, T. S., & Luoma, S. N. (2006). Forecasting selenium discharges to the San Francisco Bay-Delta Estuary: Ecological effects of a proposed San Luis Drain Extension (U.S. Geological Survey Professional Paper 1646). Reston: U.S. Department of the Interior, U.S. Geological Survey.Google Scholar
  50. Quinn, N. W. T., Lundquest, T. J., Green, F. B., Zárate, M. A., Oswald, W. J., & Leighton, T. (2000). Algal-bacterial treatment facility removes selenium from drainage water. California Agriculture, 54(6), 50–56.CrossRefGoogle Scholar
  51. Reinfelder, J. R., Wang, W. X., Luoma, S. N., & Fisher, N. S. (1997). Assimilation efficiencies and turnover rates of trace elements in marine bivalves: a comparison of oysters, clams, and mussels. Marine Biology, 129, 443–452.CrossRefGoogle Scholar
  52. Rochette, E. A., Bostick, B. C., Li, G., & Fendorf, S. (2000). Kinetics of arsenate reduction by dissolved sulfide. Environmental Science and Technology, 34, 4714–4720.CrossRefGoogle Scholar
  53. Rofen, R. (2001). Agricultural evaporation ponds – Source of marketable brine shrimp. Current Newsletter UC Center for Water Resources, 2, 9–10.Google Scholar
  54. Ryu, J., Gao, S., Dahlgren, R. A., & Zierenberg, R. Z. (2002). Arsenic distribution, speciation and solubility in the shallow ground water of Owens Dry Lake, California. Geochimica et Cosmochimica Acta, 66, 2981–2994.CrossRefGoogle Scholar
  55. Ryu, J., Gao, S., & Tanji, K. K. (2010). Speciation and behavior of arsenic in evaporation basins, California, USA. Environmental Earth Sciences, 61(8), 1599–1612. doi: 10.1007/s12665-010-0473-y.CrossRefGoogle Scholar
  56. Schlekat, C. E., Purkerson, D. G., & Luoma, S. N. (2004). Modeling selenium bioaccumulation through arthropod food webs in San Francisco Bay, California, USA. Environmental Toxicology and Chemistry, 23, 3003–3010.CrossRefGoogle Scholar
  57. Siddique, T., Zhang, Y. Q., Okeke, B. C., & Frankenberger, W. T., Jr. (2005). Characterization of sediment bacteria involved in selenium reduction. Bioresource Technology, 97, 1041–1049.CrossRefGoogle Scholar
  58. Skorupa, J. P. (1998). Selenium poisoning of fish and wildlife in nature: Lessons learned from twelve real-world examples. In W. T. Frankenberger Jr. & R. A. Engberg (Eds.), Environmental chemistry of selenium (pp. 315–354). New York: Marcel Dekker.Google Scholar
  59. Smith, G. R., Tanji, K. K., Burau, R. G., & Jurinak, J. J. (1995). Chapter 15: C Salt-A chemical equilibrium model for multicomponent solutions. In R. H. Loeppert, A. P. Schwab, & S. Goldberg (Eds.), Chemical equilibrium and reaction models (SSSA Special Publication No. 42, pp. 289–324). Madison: Soil Science Society of America.Google Scholar
  60. Stewart, A. R., Luoma, S. N., Schlekat, C. E., Dobbin, M. A., & Hieb, K. A. (2004). Food web pathways determine how selenium affects aquatic ecosystems: A San Francisco Bay case study. Environmental Science and Technology, 38, 4519–4526.CrossRefGoogle Scholar
  61. Tanji, K. K. (1990a). Accumulation of salts and trace elements in agricultural evaporation ponds. In Transaction, 14th International Congress of Soil Science (Vol. VII, pp. 180–185). International Society of Soil Science. Kyoto: Japan Soil Science Society.Google Scholar
  62. Tanji, K. K. (1990b). The nature and extent of agricultural salinity problems. In K. K. Tanji (Ed.), Agricultural salinity assessment and management (ASCE Manuals and Reports on Engineering Practice no. 71, pp. 1–17). New York: American Society of Civil Engineers.Google Scholar
  63. Tanji, K. K., Läuchli, A., & Meyer, J. (1986). Selenium in the San Joaquin Valley. Environment, 28(6), 6–11, 34–39.CrossRefGoogle Scholar
  64. Tanji, K. K., Ong, C. G., Dahlgren, R. A., & Herbel, M. J. (1992). Salt deposits in evaporation ponds: An environmental hazard? California Agriculture, 46(6), 18–21.Google Scholar
  65. Tanji, K. K., Ford, S., Toto, A., Summers, J., & Willardson, L. (1993). Evaporation ponds: What are they; why some concerns. In Management of irrigation and drainage systems: Integrated perspectives (pp. 573–579). New York: American Society of Civil Engineers.Google Scholar
  66. Tanji, K. K., Davis, D., Hanson, C., Toto, A., Higashi, R. M., & Amrhein, C. (2003). Evaporation ponds as a drainwater disposal management plan. Irrigation and Drainage Systems, 16(6), 279–296.Google Scholar
  67. Tanji, K. K., Gao, S., Ryu, J. (2006, October 10). Selenium mass balance and modeling in agricultural evaporation basins (Contract #460000567, Final report, 107 p). Sacramento: California Department of Water Resources.Google Scholar
  68. Terry, N., & Zayed, A. M. (1994). Selenium volatilization by plants. In W. T. Frankenberger Jr. & S. Benson (Eds.), Selenium in the environment (pp. 343–367). New York: Marcel Dekker.Google Scholar
  69. Thompson-Eagle, E. T., & Frankenberger, W. T., Jr. (1990a). Volatilization of selenium from agricultural evaporation pond water. Journal of Environmental Quality, 19, 125–131.CrossRefGoogle Scholar
  70. Thompson-Eagle, E. T., & Frankenberger, W. T., Jr. (1990b). Protein-mediated selenium biomethylation in evaporation pond waters. Environmental Toxicology and Chemistry, 9, 1453–1462.CrossRefGoogle Scholar
  71. Tokunaga, T. K., Pickering, I. J., & Brown, G. E., Jr. (1996). Selenium transformations in ponded sediments. Soil Science Society of America Journal, 60, 781–790.CrossRefGoogle Scholar
  72. Umysova, D., Vitova, M., Douskove, I., Bisova, K., Hlavova, M., Cizkova, M., Machat, J., Doucha, J., & Zachleder, V. (2009). Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda. BMC Plant Biology, 9, 58.CrossRefGoogle Scholar
  73. U.S. Environmental Protection Agency (USEPA). (1987). Ambient water quality for selenium-1987 (Publication EPA-440 5-87-006). Washington, DC: USEPA, Office of Water Regulations and Standards.Google Scholar
  74. Westcot, D. W., Chilcott, J. E., & Smith, G. (1993, July 21–23). Pond water sediment and crystal chemistry. In R. G. Allen & C. M. U. Neale (Eds.), Management of irrigation and drainage systems: Integrated perspectives. Proceedings of the 1993 national conference on irrigation and drainage engineering, Park City, UT (pp. 587–594). New York: American Society of Civil Engineers.Google Scholar
  75. Wilkin, R. T., Wallschläger, D., & Ford, R. G. (2003). Speciation of arsenic in sulfide waters. Geochemical Transactions, 4, 1–7.CrossRefGoogle Scholar
  76. Wrench, J. J. (1978). Selenium metabolism in the marine phytoplankters Tetraselmis tetrathele and Dunaliella minuta. Marine Biology, 49, 231–236.CrossRefGoogle Scholar
  77. Wrench, J. J., & Campbell, N. C. (1981). Protein bound selenium in some marine organisms. Chemosphere, 10, 1155–1161.CrossRefGoogle Scholar
  78. Wrench, J. J., & Measures, C. I. (1982). Temporal variations in dissolved selenium in a coastal ecosystem. Nature, 299, 431–433.CrossRefGoogle Scholar
  79. Zawislanski, P. T., & Zavarin, M. (1996). Nature and rates of selenium transformations: A laboratory study of Kesterson reservoir soils. Soil Science Society of America Journal, 60, 791–800.CrossRefGoogle Scholar
  80. Zhang, Y. Q., & Frankenberger, W. T., Jr. (2003). Characterization of selenate removal from drainage water using rice straw. Journal of Environmental Quality, 32, 441–446.Google Scholar
  81. Zhang, Y. Q., & Moore, J. N. (1996). Selenium fractionation and speciation in a wetland system. Environmental Science and Technology, 30, 2613–2619.CrossRefGoogle Scholar
  82. Zhang, Y. Q., Moore, J. N., & Frankenberger, W. T., Jr. (1999). Speciation of soluble selenium in agricultural drainage waters and aqueous soil-sediment extracts using hydride generation atomic absorption spectrometry. Environmental Science and Technology, 33, 1652–1999.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Water Management Research UnitUnited States Department of Agriculture, Agricultural Research ServiceParlierUSA
  2. 2.Department of Environmental SciencesUniversity of CaliforniaRiversideUSA

Personalised recommendations