Skip to main content

Bacterial Reduction of Selenium

  • Chapter
  • First Online:
Book cover Salinity and Drainage in San Joaquin Valley, California

Part of the book series: Global Issues in Water Policy ((GLOB,volume 5))

  • 1333 Accesses

Abstract

Microbial metabolisms play important roles in reducing soluble selanate to insoluble elemental selenium. Microorganisms capable of undergoing the reductive process have been isolated and identified. The process may be adapted to microbiologically reduce selenium in the saline drainage water generated in the west side of San Joaquin Valley thus minimizing its eco-toxic potential before releases. For effective selenium reduction, pH, salinity, redox potential and organic carbon content of the drainage water must be optimized. Amendments such as molasses, zero-valent iron, and redox mediators and microbial inoculates will significantly enhance the removal of selenium from saline drainage water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balistrieri, L. S., & Chao, T. T. (1987). Selenium adsorption by geothite. Soil Science Society of America Journal, 51, 1145–1151.

    Article  CAS  Google Scholar 

  • Balistrieri, L. S., & Chao, T. T. (1990). Adsorption of selenium by amorphous iron oxyhydroxides and manganese dioxide. Geochimica et Cosmochimica Acta, 54, 739–751.

    Article  CAS  Google Scholar 

  • Cantafio, A. W., Hagen, K. D., Lewis, G. E., Bledsoe, T. L., Nunan, K. M., & Macy, J. M. (1996). Pilot-scale selenium bioremediation of San Joaquin drainage water with Thauera selenatis. Applied and Environmental Microbiology, 62, 3298–3303.

    CAS  Google Scholar 

  • Coates, J. D., Cole, K. A., Chakraborty, R., O’Connor, S. M., & Achenbach, L. A. (2002). Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration. Applied and Environmental Microbiology, 68, 2445–2452.

    Article  CAS  Google Scholar 

  • Field, J. A. (2001). Recalcitrance as a catalyst for new developments. Water Science and Technology, 44, 33–40.

    CAS  Google Scholar 

  • Field, J. A., Cervantes, F. J., van der Zee, F. P., & Lettinga, G. (2000). Role of quinones in the biodegradation of priority pollutants: A review. Water Science and Technology, 42, 215–222.

    CAS  Google Scholar 

  • Focht, D. D. (1994). Microbiological procedures for biodegradation research. In Methods of soil analysis, Part 2. Microbiological and biochemical properties (pp. 65–94). Madison: American Society of Agronomy.

    Google Scholar 

  • Francisco, A. T., Barton, L. L., Lemanski, C. L., & Zocco, T. G. (1992). Reduction of selenate and selenite to elemental selenium by Wolinella succinogenes. Canadian Journal of Microbiology, 38, 1328–1333.

    Article  Google Scholar 

  • Frankenberger, W. T., Jr., & Karlson, U. (1989a). U.S. Patent 4,861,482. Washington, DC: United States Patent Office.

    Google Scholar 

  • Frankenberger, W. T., Jr., & Karlson, U. (1989b). Environmental factors affecting microbial production of dimethylselenide in a selenium-contaminated sediment. Soil Science Society of American Journal, 53, 1435–1442.

    Article  CAS  Google Scholar 

  • Frankenberger, W. T., Jr., & Karlson, U. (1994a). Microbial volatilization of selenium from soil and sediments. In W. T. Frankenberger Jr. & S. Benson (Eds.), Selenium in the environment (pp. 369–387). New York: Marcel Dekker.

    Google Scholar 

  • Frankenberger, W. T., Jr., & Karlson, U. (1994b). Campaigning for bioremedition. Chemtech, 24, 45–51.

    CAS  Google Scholar 

  • Frankenberger, W. T., Jr., & Arshad, M. (2001). Bioremediationj of selenium-contaminated sediment and water. BioFactors, 14, 241–254.

    Article  CAS  Google Scholar 

  • Fujita, M., Ike, M., Nishimoto, S., Takahashi, K., & Kashiwa, M. (1997). Isolation and characterization of a novel selenate-reducing bacterium, Bacillus sp. SF-1. Journal of Fermentation and Bioengineering, 83, 517–522.

    Article  CAS  Google Scholar 

  • Ike, M., Takahashi, K., Fujita, T., Kashiwa, M., & Fujita, M. (2000). Selenate reduction by bacteria isolated from aquatic environment free from selenium contamination. Water Research, 34, 3019–3025.

    Article  CAS  Google Scholar 

  • Jenkins, B. M., Bakker, R. R., & Wei, J. B. (1996). On the properties of washed straw. Biomass and Bioenergy, 10, 177–200.

    Article  CAS  Google Scholar 

  • Lortie, L., Gould, W. D., Rajan, S., McCready, R. G. L., & Cheng, K. J. (1992). Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Applied and Environmental Microbiology, 58, 4042–4044.

    CAS  Google Scholar 

  • Losi, M. E., & Frankenberger, W. T., Jr. (1997). Reduction of selenium oxyanions by Enterobacter cloacae strain SLDaa-1: Isolation and growth of the bacterium and its expulsion of selenium particles. Applied and Environmental Microbiology, 63, 3079–3084.

    CAS  Google Scholar 

  • Masscheleyn, P. H., & Patrick, W. H. J. (1993). Biogeochemical processes affecting selenium cycling in wetlands. Environmental Toxicology and Chemistry, 12, 2235–2243.

    Article  CAS  Google Scholar 

  • Mikkelsen, R. L., Mikkelsen, D. S., & Abshahi, A. (1989). Effects of soil flooding on selenium transformation and accumulation by rice. Soil Science Society of America Journal, 53, 122–127.

    Article  CAS  Google Scholar 

  • Murphy, A. P. (1988). Removal of selenate from water by chemical reduction. Industrial and Engineering Chemistry Research, 27, 187–191.

    Article  CAS  Google Scholar 

  • Myneni, S. C. B., Tokunaga, T. K., & Brown, G. E., Jr. (1997). Abiotic selenium redox transformation in the presence of Fe(II, III) oxides. Science, 278, 1106–1109.

    Article  CAS  Google Scholar 

  • Ohlendorf, H. M. (1989). Bioaccumulation and effects of selenium in wildlife. In L. W. Jacobs (Ed.), Selenium in agriculture and the environment (Soil Science Society of America, Special Publication Number 23, pp. 133–177). Madison: American Society of Agronomy.

    Google Scholar 

  • Oremland, R. S., Blum, J. S., Bindi, A. B., Dowdle, P. R., Herbel, M., & Stoltz, J. F. (1999). Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria. Applied and Environmental Microbiology, 65, 4385–4392.

    CAS  Google Scholar 

  • Oswald, W. J., Chen, P. H., Gerhardt, M. B., Green, B. F., Nurdogan, Y., Von Hippel, D. F., Newman, R. D., Chown, L., & Tam, C. S. (1989). The role of microalgae in removal of selenate from subsurface tile drainage. In M. E. Huntle (Ed.), Biotreatment of agricultural wastewater (pp. 131–141). Boca Raton: CRC Press.

    Google Scholar 

  • Presser, T. S., & Ohlendorf, H. M. (1987). Biogeochemical cycling of selenium in the San Joaquin Valley, California. USA Environmental Management, 11, 805–821.

    Article  CAS  Google Scholar 

  • Quinn, N. W. T., Lundquist, T. J., Green, F. B., Zarate, M. A., & Oswald, W. J. (2000). Algal-bacterial treatment facility removes selenium from drainage water. California Agriculture, 54, 50–56.

    Article  Google Scholar 

  • Rau, J., Knackmuss, K. J., & Stolz, A. (2002). Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environmental Science and Technology, 36, 1497–1504.

    Article  CAS  Google Scholar 

  • Refait, P., Simon, L., & Fenin, J. M. R. (2000). Reduction of SeO4 2− anions and anoxic formation of iron(II)―iron(III) hydroxy-selenate green rust. Environmental Science and Technology, 34, 819–825.

    Article  CAS  Google Scholar 

  • Steinberg, N. A., Blum, J. S., Hochstein, L., & Oremland, R. S. (1992). Nitrate is a preferred electron acceptor for growth of freshwater selenate-respiring bacteria. Applied and Environmental Microbiology, 58, 426–428.

    CAS  Google Scholar 

  • Stolz, J. F., & Oremland, R. S. (1999). Bacterial respiration of arsenic and selenium. FEMS Microbiology Reviews, 23, 615–627.

    Article  CAS  Google Scholar 

  • Sylvester, M. A. (1990). Overview of the salt and agricultural drainage problem in the western San Joaquin Valley, California (U.S. Geological Survey Circular No. 1033c).

    Google Scholar 

  • Thompson-Eagle, E. T., Frankenberger, W. T., Jr., & Karlson, U. (1989). Volatilization of selenium by Alternaria alternata. Applied and Environmental Microbiology, 55, 1406–1413.

    CAS  Google Scholar 

  • United States Sugar Corporation (USSC). (2003). Molasses composition. United States Sugar Corporation, Molasses and Liquid Feeds Division, P.O. Drawer 1207, Clewiston, Florida 33440. http://www.suga-lik.com/molasses/composition.html. Accessed June 2012

  • van der Zee, F. P., Bouwman, R. H. M., Strik, D. P. B. T. B., Lettinga, G., & Field, J. A. (2001). Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnology and Bioengineering, 75, 691–701.

    Article  Google Scholar 

  • Weres, O., Bowman, H. R., Goldstein, A., Smith, E. C., & Tsao, L. (1990). The effect of nitrate and organic matter upon mobility of selenium in groundwater and in a water treatment process. Water, Air, and Soil Pollution, 49, 251–272.

    Article  CAS  Google Scholar 

  • Zahir, Z. A., Zhang, Y. Q., & Frankenberger, W. T., Jr. (2003). Fate of selenate metabolized by Enterobacter taylorae isolated from rice straw. Journal of Agricultural and Food Chemistry, 51, 3609–3613.

    Article  CAS  Google Scholar 

  • Zehr, J. P., & Oremland, R. S. (1987). Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and Estuarine sediments. Applied and Environmental Microbiology, 53, 1365–1369.

    CAS  Google Scholar 

  • Zhang, Y. Q., & Frankenberger, W. T., Jr. (2003a). Characterization of selenate removal from drainage water utilizing rice straw. Journal of Environmental Quality, 32, 441–446.

    CAS  Google Scholar 

  • Zhang, Y. Q., & Frankenberger, W. T., Jr. (2003b). Factors affecting removal of selenate in agricultural drainage water utilizing rice straw. The Science of the Total Environment, 305, 207–216.

    Article  CAS  Google Scholar 

  • Zhang, Y. Q., & Frankenberger, W. T., Jr. (2003c). Removal of selenate in simulated agricultural drainage water by a rice straw bioreactor channel system. Journal of Environmental Quality, 32, 1650–1657.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Frankenberger, W. T., Jr. (2006). Removal of selenate in river and drainage waters by Citerobacter braakii enhanced with zero-valent iron. Journal of Agricultural and Food Chemistry, 54, 152–156.

    Article  CAS  Google Scholar 

  • Zhang, Y. Q., & Frankenberger, W. T., Jr. (2007). Supplementing Bacillus sp. RS1 with Dechloromonas sp. HZ for enhancing selenate reduction in agricultural drainage water. The Science of the Total Environment , 372, 397–405.

    Article  CAS  Google Scholar 

  • Zhang, Y. Q., Zahir, Z. A., & Frankenberger, W. T., Jr. (2003). Factors affecting reduction of selenate in drainage water by Enterobacter taylorae. Journal of Agricultural and Food Chemistry, 51, 7073–7078.

    Article  CAS  Google Scholar 

  • Zhang, Y. Q., Siddique, T., Wang, J., & Frankenberger, W. T., Jr. (2004). Selenate reduction in river water by Citerobacter freundii isolated from a selenium-contaminated sediment. Journal of Agricultural and Food Chemistry, 52, 1594–1600.

    Article  CAS  Google Scholar 

  • Zhang, Y. Q., Wang, J., Amrhein, C., & Frankenberger, W. T., Jr. (2005). Removal of selenate from water by zero valent iron. Journal of Environmental Quality, 34, 487–495.

    Article  Google Scholar 

  • Zhang, Y. Q., Okeke, B. C., & Frankenberger, W. T., Jr. (2007a). Bacterial reduction of selenate to elemental selenium utilizing molasses as a carbon source. Bioresource Technology, 99(5), 1267–1273.

    Article  Google Scholar 

  • Zhang, Y. Q., Zahir, Z. A., Amrhein, C., Chang, A. C., & Frankenberger, W. T., Jr. (2007b). Application of redox mediator to accelerate selenate reduction to elemental selenium by Enterobacter taylorae. Journal of Agricultural and Food Chemistry, 55, 5714–5717.

    Article  CAS  Google Scholar 

  • Zingaro, R. A., Dufner, D. C., Murphy, A. P., & Moody, C. D. (1997). Reduction of oxoselenium anions by iron(II) hydroxide. Environment International, 23, 299–304.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William T. Frankenberger Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, Y., Frankenberger, W.T. (2014). Bacterial Reduction of Selenium. In: Chang, A., Brawer Silva, D. (eds) Salinity and Drainage in San Joaquin Valley, California. Global Issues in Water Policy, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6851-2_7

Download citation

Publish with us

Policies and ethics