Advertisement

Bacterial Reduction of Selenium

  • Yiqiang Zhang
  • William T. FrankenbergerJr.Email author
Chapter
Part of the Global Issues in Water Policy book series (GLOB, volume 5)

Abstract

Microbial metabolisms play important roles in reducing soluble selanate to insoluble elemental selenium. Microorganisms capable of undergoing the reductive process have been isolated and identified. The process may be adapted to microbiologically reduce selenium in the saline drainage water generated in the west side of San Joaquin Valley thus minimizing its eco-toxic potential before releases. For effective selenium reduction, pH, salinity, redox potential and organic carbon content of the drainage water must be optimized. Amendments such as molasses, zero-valent iron, and redox mediators and microbial inoculates will significantly enhance the removal of selenium from saline drainage water.

Keywords

Rice Straw Drainage Water Redox Mediator Trace Element Solution Zero Valent Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Balistrieri, L. S., & Chao, T. T. (1987). Selenium adsorption by geothite. Soil Science Society of America Journal, 51, 1145–1151.CrossRefGoogle Scholar
  2. Balistrieri, L. S., & Chao, T. T. (1990). Adsorption of selenium by amorphous iron oxyhydroxides and manganese dioxide. Geochimica et Cosmochimica Acta, 54, 739–751.CrossRefGoogle Scholar
  3. Cantafio, A. W., Hagen, K. D., Lewis, G. E., Bledsoe, T. L., Nunan, K. M., & Macy, J. M. (1996). Pilot-scale selenium bioremediation of San Joaquin drainage water with Thauera selenatis. Applied and Environmental Microbiology, 62, 3298–3303.Google Scholar
  4. Coates, J. D., Cole, K. A., Chakraborty, R., O’Connor, S. M., & Achenbach, L. A. (2002). Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration. Applied and Environmental Microbiology, 68, 2445–2452.CrossRefGoogle Scholar
  5. Field, J. A. (2001). Recalcitrance as a catalyst for new developments. Water Science and Technology, 44, 33–40.Google Scholar
  6. Field, J. A., Cervantes, F. J., van der Zee, F. P., & Lettinga, G. (2000). Role of quinones in the biodegradation of priority pollutants: A review. Water Science and Technology, 42, 215–222.Google Scholar
  7. Focht, D. D. (1994). Microbiological procedures for biodegradation research. In Methods of soil analysis, Part 2. Microbiological and biochemical properties (pp. 65–94). Madison: American Society of Agronomy.Google Scholar
  8. Francisco, A. T., Barton, L. L., Lemanski, C. L., & Zocco, T. G. (1992). Reduction of selenate and selenite to elemental selenium by Wolinella succinogenes. Canadian Journal of Microbiology, 38, 1328–1333.CrossRefGoogle Scholar
  9. Frankenberger, W. T., Jr., & Karlson, U. (1989a). U.S. Patent 4,861,482. Washington, DC: United States Patent Office.Google Scholar
  10. Frankenberger, W. T., Jr., & Karlson, U. (1989b). Environmental factors affecting microbial production of dimethylselenide in a selenium-contaminated sediment. Soil Science Society of American Journal, 53, 1435–1442.CrossRefGoogle Scholar
  11. Frankenberger, W. T., Jr., & Karlson, U. (1994a). Microbial volatilization of selenium from soil and sediments. In W. T. Frankenberger Jr. & S. Benson (Eds.), Selenium in the environment (pp. 369–387). New York: Marcel Dekker.Google Scholar
  12. Frankenberger, W. T., Jr., & Karlson, U. (1994b). Campaigning for bioremedition. Chemtech, 24, 45–51.Google Scholar
  13. Frankenberger, W. T., Jr., & Arshad, M. (2001). Bioremediationj of selenium-contaminated sediment and water. BioFactors, 14, 241–254.CrossRefGoogle Scholar
  14. Fujita, M., Ike, M., Nishimoto, S., Takahashi, K., & Kashiwa, M. (1997). Isolation and characterization of a novel selenate-reducing bacterium, Bacillus sp. SF-1. Journal of Fermentation and Bioengineering, 83, 517–522.CrossRefGoogle Scholar
  15. Ike, M., Takahashi, K., Fujita, T., Kashiwa, M., & Fujita, M. (2000). Selenate reduction by bacteria isolated from aquatic environment free from selenium contamination. Water Research, 34, 3019–3025.CrossRefGoogle Scholar
  16. Jenkins, B. M., Bakker, R. R., & Wei, J. B. (1996). On the properties of washed straw. Biomass and Bioenergy, 10, 177–200.CrossRefGoogle Scholar
  17. Lortie, L., Gould, W. D., Rajan, S., McCready, R. G. L., & Cheng, K. J. (1992). Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Applied and Environmental Microbiology, 58, 4042–4044.Google Scholar
  18. Losi, M. E., & Frankenberger, W. T., Jr. (1997). Reduction of selenium oxyanions by Enterobacter cloacae strain SLDaa-1: Isolation and growth of the bacterium and its expulsion of selenium particles. Applied and Environmental Microbiology, 63, 3079–3084.Google Scholar
  19. Masscheleyn, P. H., & Patrick, W. H. J. (1993). Biogeochemical processes affecting selenium cycling in wetlands. Environmental Toxicology and Chemistry, 12, 2235–2243.CrossRefGoogle Scholar
  20. Mikkelsen, R. L., Mikkelsen, D. S., & Abshahi, A. (1989). Effects of soil flooding on selenium transformation and accumulation by rice. Soil Science Society of America Journal, 53, 122–127.CrossRefGoogle Scholar
  21. Murphy, A. P. (1988). Removal of selenate from water by chemical reduction. Industrial and Engineering Chemistry Research, 27, 187–191.CrossRefGoogle Scholar
  22. Myneni, S. C. B., Tokunaga, T. K., & Brown, G. E., Jr. (1997). Abiotic selenium redox transformation in the presence of Fe(II, III) oxides. Science, 278, 1106–1109.CrossRefGoogle Scholar
  23. Ohlendorf, H. M. (1989). Bioaccumulation and effects of selenium in wildlife. In L. W. Jacobs (Ed.), Selenium in agriculture and the environment (Soil Science Society of America, Special Publication Number 23, pp. 133–177). Madison: American Society of Agronomy.Google Scholar
  24. Oremland, R. S., Blum, J. S., Bindi, A. B., Dowdle, P. R., Herbel, M., & Stoltz, J. F. (1999). Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria. Applied and Environmental Microbiology, 65, 4385–4392.Google Scholar
  25. Oswald, W. J., Chen, P. H., Gerhardt, M. B., Green, B. F., Nurdogan, Y., Von Hippel, D. F., Newman, R. D., Chown, L., & Tam, C. S. (1989). The role of microalgae in removal of selenate from subsurface tile drainage. In M. E. Huntle (Ed.), Biotreatment of agricultural wastewater (pp. 131–141). Boca Raton: CRC Press.Google Scholar
  26. Presser, T. S., & Ohlendorf, H. M. (1987). Biogeochemical cycling of selenium in the San Joaquin Valley, California. USA Environmental Management, 11, 805–821.CrossRefGoogle Scholar
  27. Quinn, N. W. T., Lundquist, T. J., Green, F. B., Zarate, M. A., & Oswald, W. J. (2000). Algal-bacterial treatment facility removes selenium from drainage water. California Agriculture, 54, 50–56.CrossRefGoogle Scholar
  28. Rau, J., Knackmuss, K. J., & Stolz, A. (2002). Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environmental Science and Technology, 36, 1497–1504.CrossRefGoogle Scholar
  29. Refait, P., Simon, L., & Fenin, J. M. R. (2000). Reduction of SeO4 2− anions and anoxic formation of iron(II)―iron(III) hydroxy-selenate green rust. Environmental Science and Technology, 34, 819–825.CrossRefGoogle Scholar
  30. Steinberg, N. A., Blum, J. S., Hochstein, L., & Oremland, R. S. (1992). Nitrate is a preferred electron acceptor for growth of freshwater selenate-respiring bacteria. Applied and Environmental Microbiology, 58, 426–428.Google Scholar
  31. Stolz, J. F., & Oremland, R. S. (1999). Bacterial respiration of arsenic and selenium. FEMS Microbiology Reviews, 23, 615–627.CrossRefGoogle Scholar
  32. Sylvester, M. A. (1990). Overview of the salt and agricultural drainage problem in the western San Joaquin Valley, California (U.S. Geological Survey Circular No. 1033c).Google Scholar
  33. Thompson-Eagle, E. T., Frankenberger, W. T., Jr., & Karlson, U. (1989). Volatilization of selenium by Alternaria alternata. Applied and Environmental Microbiology, 55, 1406–1413.Google Scholar
  34. United States Sugar Corporation (USSC). (2003). Molasses composition. United States Sugar Corporation, Molasses and Liquid Feeds Division, P.O. Drawer 1207, Clewiston, Florida 33440. http://www.suga-lik.com/molasses/composition.html. Accessed June 2012
  35. van der Zee, F. P., Bouwman, R. H. M., Strik, D. P. B. T. B., Lettinga, G., & Field, J. A. (2001). Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnology and Bioengineering, 75, 691–701.CrossRefGoogle Scholar
  36. Weres, O., Bowman, H. R., Goldstein, A., Smith, E. C., & Tsao, L. (1990). The effect of nitrate and organic matter upon mobility of selenium in groundwater and in a water treatment process. Water, Air, and Soil Pollution, 49, 251–272.CrossRefGoogle Scholar
  37. Zahir, Z. A., Zhang, Y. Q., & Frankenberger, W. T., Jr. (2003). Fate of selenate metabolized by Enterobacter taylorae isolated from rice straw. Journal of Agricultural and Food Chemistry, 51, 3609–3613.CrossRefGoogle Scholar
  38. Zehr, J. P., & Oremland, R. S. (1987). Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and Estuarine sediments. Applied and Environmental Microbiology, 53, 1365–1369.Google Scholar
  39. Zhang, Y. Q., & Frankenberger, W. T., Jr. (2003a). Characterization of selenate removal from drainage water utilizing rice straw. Journal of Environmental Quality, 32, 441–446.Google Scholar
  40. Zhang, Y. Q., & Frankenberger, W. T., Jr. (2003b). Factors affecting removal of selenate in agricultural drainage water utilizing rice straw. The Science of the Total Environment, 305, 207–216.CrossRefGoogle Scholar
  41. Zhang, Y. Q., & Frankenberger, W. T., Jr. (2003c). Removal of selenate in simulated agricultural drainage water by a rice straw bioreactor channel system. Journal of Environmental Quality, 32, 1650–1657.CrossRefGoogle Scholar
  42. Zhang, Y., & Frankenberger, W. T., Jr. (2006). Removal of selenate in river and drainage waters by Citerobacter braakii enhanced with zero-valent iron. Journal of Agricultural and Food Chemistry, 54, 152–156.CrossRefGoogle Scholar
  43. Zhang, Y. Q., & Frankenberger, W. T., Jr. (2007). Supplementing Bacillus sp. RS1 with Dechloromonas sp. HZ for enhancing selenate reduction in agricultural drainage water. The Science of the Total Environment , 372, 397–405.CrossRefGoogle Scholar
  44. Zhang, Y. Q., Zahir, Z. A., & Frankenberger, W. T., Jr. (2003). Factors affecting reduction of selenate in drainage water by Enterobacter taylorae. Journal of Agricultural and Food Chemistry, 51, 7073–7078.CrossRefGoogle Scholar
  45. Zhang, Y. Q., Siddique, T., Wang, J., & Frankenberger, W. T., Jr. (2004). Selenate reduction in river water by Citerobacter freundii isolated from a selenium-contaminated sediment. Journal of Agricultural and Food Chemistry, 52, 1594–1600.CrossRefGoogle Scholar
  46. Zhang, Y. Q., Wang, J., Amrhein, C., & Frankenberger, W. T., Jr. (2005). Removal of selenate from water by zero valent iron. Journal of Environmental Quality, 34, 487–495.CrossRefGoogle Scholar
  47. Zhang, Y. Q., Okeke, B. C., & Frankenberger, W. T., Jr. (2007a). Bacterial reduction of selenate to elemental selenium utilizing molasses as a carbon source. Bioresource Technology, 99(5), 1267–1273.CrossRefGoogle Scholar
  48. Zhang, Y. Q., Zahir, Z. A., Amrhein, C., Chang, A. C., & Frankenberger, W. T., Jr. (2007b). Application of redox mediator to accelerate selenate reduction to elemental selenium by Enterobacter taylorae. Journal of Agricultural and Food Chemistry, 55, 5714–5717.CrossRefGoogle Scholar
  49. Zingaro, R. A., Dufner, D. C., Murphy, A. P., & Moody, C. D. (1997). Reduction of oxoselenium anions by iron(II) hydroxide. Environment International, 23, 299–304.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Environmental SciencesUniversity of CaliforniaRiversideUSA

Personalised recommendations