Uptake, Metabolism, and Volatilization of Selenium by Terrestrial Plants

  • Elizabeth A. H. Pilon-Smits
  • Gary S. Bañuelos
  • David R. ParkerEmail author
Part of the Global Issues in Water Policy book series (GLOB, volume 5)


There is a broad range in the tendency for higher plants to take up and accumulate Se in their aerial parts, both across species and within species. The primary accumulators of Se (hyperaccumulators) are from the Brassicaceae, Fabaceae and Asteraceae families, are endemic to naturally seleniferous soils, and can exhibit shoot Se concentrations as high as 10 × 103 mg kg−1 dry weight in field-grown specimens. Typically inorganic selenate is transported to the leaf chloroplast, where it is reduced first to selenite and then further reduced and assimilated into organic Se. Because of the chemical similarities between Se and S, selenate and selenite are readily assimilated by the S-metabolizing enzymes of the plant. The first stable, organic form of Se produced is selenocysteine which can be incorporated nonspecifically into proteins in lieu of cysteine, leading to phytotoxicity. An alternative fate of selenocysteine is ultimate conversion to selenomethionine, which also can be incorporated mistakenly into proteins, with generally less harmful effects. The selenomethionine can also be volatilized, converted to volatile dimethylselenide, offering a release valve for excess Se from the plant. Phytovolatilization of methylated Se compounds, offers an opportunity for the phytoextraction strategies to mitigate selenium laden soils.


Tall Fescue Sulfate Transporter Dimethyl Selenide Double Transgenics Seleniferous Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abrams, M. M., Shennan, C., Zazoski, J., & Burau, R. G. (1990). Selenomethionine uptake by wheat seedlings. Agronomy Journal, 82, 1127–1130.CrossRefGoogle Scholar
  2. Arvy, M. P. (1993). Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris). Journal of Experimental Botany, 44, 1083–1087.CrossRefGoogle Scholar
  3. Bañuelos, G. S., & Lin, Z. Q. (2007). Acceleration of selenium volatilization in seleniferous agricultural drainage sediments amended with methionine and casein. Environmental Pollution, 150, 306–312.CrossRefGoogle Scholar
  4. Bañuelos, G. S., Meek, D. W., & Hoffman, G. J. (1990). The influence of selenium, salinity, and boron on selenium uptake in wild mustard. Plant and Soil, 127, 201–206.CrossRefGoogle Scholar
  5. Bañuelos, G., Mead, S. R., & Hoffman, G. J. (1993). Accumulation of selenium in wild mustard irrigated with agricultural effluent. Agriculture, Ecosystems and Environment, 43, 119–126.CrossRefGoogle Scholar
  6. Bañuelos, G. S., Zayed, A., Terry, N., Wu, L., Akohoue, S., & Zambrzuski, S. (1996). Accumulation of selenium by different plant species grown under increasing sodium and calcium chloride salinity. Plant and Soil, 183, 49–59.CrossRefGoogle Scholar
  7. Bañuelos, G. S., Ajwa, H. A., Mackey, M., Wu, L., Cook, C., Akohoue, S., & Zambruzuski, S. (1997a). Evaluation of different plant species used for phytoremediation of high soil selenium. Journal of Environmental Quality, 26, 639–646.CrossRefGoogle Scholar
  8. Bañuelos, G. S., Ajwa, H. A., Wu, L., Guo, X., Akohoue, S., & Zambrzuski, S. (1997b). Selenium-induced reduction in Brassica land races considered for phytoremediation. Ecotoxicology and Environmental Safety, 36, 282–287.CrossRefGoogle Scholar
  9. Bañuelos, G. S., Lin, Z. Q., Arroyo, I., & Terry, N. (2005a). Selenium volatilization in vegetated agricultural drainage sediment from the San Luis Drain, Central California. Chemosphere, 60, 1203–1213.CrossRefGoogle Scholar
  10. Bañuelos, G. S., Terry, N., LeDuc, D. L., Pilon-Smits, E. A. S., & Mackey, B. (2005b). Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium contaminated sediment. Environmental Science and Technology, 39, 1771–1777.CrossRefGoogle Scholar
  11. Bañuelos, G. S., LeDuc, D. L., Pilon-Smits, E. A. H., Tagmount, A., & Terry, N. (2007). Transgenic Indian mustard overexpressing selenocysteine lyase, selenocysteine methyltransferase, or methionine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environmental Science and Technology, 41, 599–605.CrossRefGoogle Scholar
  12. Barberon, M. P., Berthomieu, M., Clairotte, M., Shilbagaki, N., Davidian, J., & Gosti, F. (2008). Unequal functional redundancy between the two Arabidopsis thaliana high-affinity sulphate transporters SULTR1;1 and SULTR1;2. The New Phytologist, 180, 608–619.CrossRefGoogle Scholar
  13. Bell, P. F., Parker, D. R., & Page, A. L. (1992). Contrasting selenate-sulfate interactions in selenium-accumulating and nonaccumulating plant species. Soil Science Society of America Journal, 56, 1818–1824.CrossRefGoogle Scholar
  14. Brooks, R. R., Lee, J., Jaffré, R., & Jaffré, T. (1977). Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration, 7, 49–57.CrossRefGoogle Scholar
  15. Brown, T. A., & Shrift, A. (1982). Selenium: Toxicity and tolerance in higher plants. Biological Reviews, 57, 59–84.CrossRefGoogle Scholar
  16. Broyer, T. C., Huston, R. P., & Johnson, C. M. (1972). Selenium and nutrition of Astragalus. 1. Effects of selenite or selenate supply on growth and selenium content. Plant and Soil, 36, 635–649.CrossRefGoogle Scholar
  17. de Souza, M. P., Pilon-Smits, E. A. H., Lytle, C. M., Hwang, S., Tai, J., Honma, T. S. U., Yeh, L., & Terry, N. (1998). Rate-limiting steps in selenium volatilization by Brassica juncea. Plant Physiology, 117, 1487–1494.CrossRefGoogle Scholar
  18. de Souza, M. P., Chu, D., Zhao, M., Zayed, A. M., Ruzin, S. E., Schichnes, D., & Terry, N. (1999). Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiology, 119, 565–574.CrossRefGoogle Scholar
  19. de Souza, P., Lytle, M., Mulholland, M. M., Otte, M. L., & Terry, N. (2000). Selenium assimilation and volatilization from dimethylselenoniopropionate by Indian mustard. Plant Physiology, 122, 1281–1288.CrossRefGoogle Scholar
  20. Duckart, E. C., Waldron, L. J., & Doner, H. E. (1992). Selenium, uptake and volatilization from plants grown in soils. Soil Science, 153, 94–99.CrossRefGoogle Scholar
  21. El Kassis, E., Cathala, N., Rouached, H., Fourcroy, P., Berthomieu, P., Terry, N., & Davidian, J. (2007). Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenate toxicity. Plant Physiology, 143, 1231–1241.CrossRefGoogle Scholar
  22. Ellis, D. R., Sors, T. G., Brunk, D. G., Albrecht, C., Orser, C., Lahner, B., Wood, K. V., Harris, H. H., Pickering, I. J., & Salt, D. E. (2004). Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biology, 4, 1–11.CrossRefGoogle Scholar
  23. Evans, C., Asher, C. J., & Johnson, C. M. (1968). Isolation of dimethyl diselenide and other volatile selenium compounds from Astragalus racemosus (Pursh.). Australian Journal of Biological Sciences, 21, 13–20.Google Scholar
  24. Feist, L. J., & Parker, D. R. (2001). Ecotypic variation in selenium accumulation among populations of Stanleya pinnata. The New Phytologist, 149, 61–69.CrossRefGoogle Scholar
  25. Galeas, M. L., Zhang, L. H., Freeman, J. L., Wegner, M., & Pilon-Smits, E. A. H. (2007). Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators. The New Phytologist, 173, 517–525.CrossRefGoogle Scholar
  26. Garifullina, G. F., Owen, J. D., Lindblom, S.-D., Tufan, H., Pilon, M., & Pilon-Smits, E. A. H. (2003). Expression of a mouse selenocysteine lyase in Brassica juncea chloroplasts affects selenium tolerance and accumulation. Physiologia Plantarum, 118, 538–544.CrossRefGoogle Scholar
  27. Grant, T. D., Montes-Bayón, M., LeDuc, D. L., Fricke, M. W., Terry, N., & Caruso, J. A. (2004). Identification and characterization of Se-methyl selenomethionine in Brassica juncea roots. Journal of Chromatography. A, 1026, 159–166.CrossRefGoogle Scholar
  28. Hopper, J. L., & Parker, D. R. (1999). Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant and Soil, 210, 199–207.CrossRefGoogle Scholar
  29. Kahakachchi, C., Boakye, H. T., Uden, P. C., & Tyson, J. F. (2004). Chromatographic speciation of anionic and neutral selenium compounds in Se-accumulating Brassica juncea (Indian mustard) and in selenized yeast. Journal of Chromatography. A, 1054, 303–312.Google Scholar
  30. Kápolna, E., Shah, M., Caruso, J. A., & Fodor, P. (2007). Selenium speciation studies in Se-enriched chives (Allium schoenoprasum) by HPLC-ICP-MS. Food Chemistry, 101, 1398–1406.CrossRefGoogle Scholar
  31. Keith, L. H., & Telliard, W. A. (1979). Priority pollutants: I-a perspective view. Environmental Science and Technology, 13, 416–423.CrossRefGoogle Scholar
  32. Khattak, R., Page, A. L., Parker, D. R., & Bakhtar, D. (1991). Accumulation and interactions of arsenic, selenium, molybdenum and phosphorus in alfalfa. Journal of Environmental Quality, 20, 165–168.CrossRefGoogle Scholar
  33. Kubachka, K. M., Meija, J., LeDuc, D. L., Terry, N., & Caruso, J. A. (2007). Selenium volatiles as proxy to the metabolic pathways of selenium in genetically modified Brassica juncea. Environmental Science and Technology, 41, 1863–1869.CrossRefGoogle Scholar
  34. Läuchli, A. (1993). Selenium in plants: Uptake, functions, and environmental toxicity. Botanica Acta, 106, 455–468.Google Scholar
  35. LeDuc, D. L., Tarun, A. S., Montes-Bayon, M., Meija, J., Malit, M. F., Wu, C. P., AbdelSamie, M., Chiang, C.-Y., Tagmount, A., deSouza, M. P., Neuhierl, B., Bock, A., Caruso, J. A., & Terry, N. (2004). Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiology, 135, 377–383.CrossRefGoogle Scholar
  36. LeDuc, D. L., AbdelSamie, M., Montes-Bayón, M., Wu, C. P., Reisinger, S. J., & Terry, N. (2006). Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environmental Pollution, 144, 70–76.CrossRefGoogle Scholar
  37. Lewis, B. G., Johnson, C. M., & Delwiche, C. C. (1966). Release of volatile selenium compounds by plants: Collection procedures and preliminary observations. Journal of Agricultural and Food Chemistry, 14, 638–640.CrossRefGoogle Scholar
  38. Lewis, B. G., Johnson, C. M., & Broyer, T. C. (1974). Volatile selenium in higher plants the production of di methyl selenide in cabbage leaves by enzymatic cleavage of selenium methyl seleno methionine selenium salt. Plant and Soil, 40, 107–118.CrossRefGoogle Scholar
  39. Li, H.-F., McGrath, S. P., & Zhao, F.-J. (2008). Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. The New Phytologist, 178, 92–102.CrossRefGoogle Scholar
  40. Lin, Z. Q., Cervinka, V., Pickering, I. J., Zayed, A., & Terry, N. (2002). Managing selenium-contaminated agricultural drainage water by the integrated on-farm drainage management system: Role of selenium volatilization. Water Research, 36, 3150–3160.CrossRefGoogle Scholar
  41. Mayland, H. F., James, L. F., Panter, K. E., & Sonderegger, J. L. (1989). Selenium in seleniferous environments. In L. W. Jacobs (Ed.), Selenium in agriculture and the environment (Soil Science Society of America, Special Publication Number 23, pp. 15–50). Madison: American Society of Agronomy.Google Scholar
  42. McLaughlin, M. J., Parker, D. R., & Clark, J. (1999). Metals and micronutrients: Food safety issues. Field Crops Research, 60, 143–163.CrossRefGoogle Scholar
  43. Mikkelsen, R. L., Page, A. L., & Haghnia, G. H. (1988). Effect of salinity and its composition on the accumulation of selenium by alfalfa. Plant and Soil, 107, 63–67.CrossRefGoogle Scholar
  44. Munier-Lamy, C., Deneux-Mustin, S., Mustin, C., Merlet, D., Berthelin, J., & Leyval, C. (2007). Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass. Journal of Environmental Radioactivity, 97, 148–158.CrossRefGoogle Scholar
  45. Neuhierl, B., & Böck, A. (1996). On the mechanism of selenium tolerance in selenium-accumulating plants: Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisulcatus. European Journal of Biochemistry, 239, 235–238.CrossRefGoogle Scholar
  46. Neuhierl, B., Thanbichler, M., Lottspeich, F., & Böck, A. (1999). A family of S-methylmethionine-dependent thiol/selenol methyltransferases. Role in selenium tolerance and evolutionary relation. The Journal of Biological Chemistry, 274, 5407–5414.CrossRefGoogle Scholar
  47. Ohlendorf, H. M. (1989). Bioaccumulation and effects of selenium in wildlife. In L. W. Jacobs (Ed.), Selenium in agriculture and the environment (Soil Science Society of America, Special Publication Number 23, pp. 133–177). Madison: American Society of Agronomy.Google Scholar
  48. Parker, D. R., & Norvell, W. A. (1999). Advances in solution culture methods for plant mineral nutrition research. Advances in Agronomy, 65, 151–213.CrossRefGoogle Scholar
  49. Parker, D. R., & Page, A. L. (1994). Vegetation management strategies for remediation of selenium-contaminated soils. In W. T. Frankenberger Jr. & S. Benson (Eds.), Selenium in the environment (pp. 327–341). New York: Marcel Dekker, Inc.Google Scholar
  50. Parker, D. R., Page, A. L., & Thomason, D. N. (1991). Salinity and boron tolerances of candidate species for the removal of selenium from soils. Journal of Environmental Quality, 20, 157–164.CrossRefGoogle Scholar
  51. Parker, D. R., Feist, L. J., Varvel, T. W., Thomason, D. N., & Zhang, Y. (2003). Selenium phytoremediation potential of Stanleya pinnata. Plant and Soil, 249, 157–165.CrossRefGoogle Scholar
  52. Pilon, M., Owen, J. D., Garifullina, G. F., Kurihara, T., Mihara, H., Esaki, N., & Pilon-Smits, E. A. H. (2003). Enhanced selenium tolerance and accumulation in transgenic Arabidopsisthaliana expressing a mouse selenocysteine lyase. Plant Physiology, 131, 1250–1257.CrossRefGoogle Scholar
  53. Pilon-Smits, E. A. H. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.CrossRefGoogle Scholar
  54. Pilon-Smits, E. A. H., & Quinn, C. F. (2010). Selenium metabolism in plants. In R. Hell & R.-R. Mendel (Eds.), Cell biology of metals and nutrients (Plant cell monograph series, 17, pp. 225–241). Heidelberg: Springer.CrossRefGoogle Scholar
  55. Pilon-Smits, E. A. H., Hwang, S., Lytle, C. M., Zhu, Y., Tai, J. C., Bravo, R. C., Chen, Y., Leustek, T., & Terry, N. (1999). Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiology, 119, 123–132.CrossRefGoogle Scholar
  56. Presser, T. S., & Ohlendorf, H. M. (1987). Biogeochemical cycling of selenium in the San Joaquin Valley, California. USA Environmental Management, 11, 805–821.CrossRefGoogle Scholar
  57. Retana, J., Parker, D. R., Amrhein, C., & Page, A. L. (1993). Growth and trace element concentrations of five plant species grown in a highly saline soil. Journal of Environmental Quality, 22, 805–811.CrossRefGoogle Scholar
  58. Rosenfeld, I., & Beath, O. A. (1964). Selenium: Geobotany, biochemistry, toxicity, and nutrition. New York: Academic.Google Scholar
  59. Seiler, R. L. (1995). Prediction of areas where irrigation drainage may induce selenium contaminated water. Journal of Environmental Quality, 24, 973–979.CrossRefGoogle Scholar
  60. Shrift, A., & Virupaksha, T. K. (1963). Biosynthesis of Se-methyl-selenocysteine from selenite in selenium-accumulating plants. Biochimica et Biophysica Acta, 71, 483–485.CrossRefGoogle Scholar
  61. Sors, T. G., Ellis, D. R., & Salt, D. E. (2005). Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynthesis Research, 86, 373–389.CrossRefGoogle Scholar
  62. Stadlober, M., Sager, M., & Irgolick, K. J. (2001). Effects of selenate supplemented fertilisation on the selenium level of cereals – Identification and quantification of selenium compounds by HPLC-ICP-MS. Food Chemistry, 73, 357–366.CrossRefGoogle Scholar
  63. Terry, N., Calrson, C., Raab, T. K., & Zayed, A. M. (1992). Rates of selenium volatilization among crop species. Journal of Environmental Quality, 21, 341–344.CrossRefGoogle Scholar
  64. Terry, N., Zayed, A. M., de Souza, M. P., & Tarun, A. S. (2000). Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 401–432.CrossRefGoogle Scholar
  65. Thompson-Eagle, E. T., Frankenberger, W. T., Jr., & Karlson, U. (1989). Volatilization of selenium by Alternaria alternata. Applied and Environmental Microbiology, 55, 1406–1413.Google Scholar
  66. Trelease, S. F., Di Somma, A. A., & Jacobs, A. L. (1960). Seleno-amino acid found in Astragalus bisulcatus. Science, 132, 618.CrossRefGoogle Scholar
  67. Van Huysen, T., Abdel-Ghany, S., Hale, K. L., LeDuc, D. L., Terry, N., & Pilon-Smits, E. A. H. (2003). Overexpression of cystathionine synthase in Indian mustard enhances selenium volatilization. Planta, 218, 71–78.CrossRefGoogle Scholar
  68. Van Huysen, T., Terry, N., & Pilon-Smits, E. A. H. (2004). Exploring the selenium phytoremediation potential of transgenic Brassica juncea overexpressing ATP sulfurylase or cystathionine -synthase. International Journal of Phytoremediation, 6, 111–118.CrossRefGoogle Scholar
  69. Van Mantgem, P. J., Wu, L., & Banuelos, G. S. (1996). Bioextraction of selenium by forage and selected field legume species in selenium-laden soils under minimal field management conditions. Ecotoxicology and Environmental Safety, 34, 228–238.CrossRefGoogle Scholar
  70. Virupaksha, T. K., & Shrift, A. (1965). Biochemical differences between selenium accumulator and non-accumulator Astragalus species. Biochimica et Biophysica Acta, 107, 69–80.CrossRefGoogle Scholar
  71. Wang, Z., Xie, S., & Peng, A. (1996). Distribution of Se in soybean samples with different Se concentration. Journal of Agricultural and Food Chemistry, 44(9), 2754–2759.CrossRefGoogle Scholar
  72. Whanger, P. D. (2002). Selenocompounds in plants and animals and their biological significance. Journal of the American College of Nutrition, 21(3), 223–232.CrossRefGoogle Scholar
  73. White, P. J., Bowen, H. C., Parmaguru, P., Fritz, M., Spracklen, W. P., Spilby, R. E., Meacham, M. C., Mead, A., Harriman, M., Trueman, L. J., Smith, B. M., Thomas, B., & Broadley, M. R. (2004). Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. [Sulphur metabolism in plants, Special Issue]. Journal of Experimental Botany, 55(404), 1927–1937.CrossRefGoogle Scholar
  74. White, P. J., Bowen, H. C., Marshall, B., & Broadley, M. R. (2007). Extraordinarily high leaf selenium to sulfur ratios define ‘Se-accumulator’ plants. Annals of Botany, 10(1), 111–118.CrossRefGoogle Scholar
  75. Wu, L., & Huang, Z. (1991). Selenium tolerance, salt tolerance, and selenium accumulation in tall fescue lines. Ecotoxicology and Environmental Safety, 21, 47–56.CrossRefGoogle Scholar
  76. Wu, L., & Huang, Z. (1992). Selenium assimilation and nutrient element uptake in white clover and tall fescue under the influence of sulfate concentration and selenium tolerance of the plants. Journal of Experimental Botany, 43, 549–555.CrossRefGoogle Scholar
  77. Ximenez-Embun, P., Alonso, I., Madrid, A., & Caâ – Mara, C. (2004). Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants. Journal of Agricultural and Food Chemistry, 52, 832–838.CrossRefGoogle Scholar
  78. Zayed, A., & Terry, N. (1994). Selenium volatilization in roots and shoots: Effects of shoot removal and sulfate level. Journal of Plant Physiology, 160, 180–184.Google Scholar
  79. Zayed, A., Lytle, C. M., & Terry, N. (1998). Accumulation and volatilization of different chemical species of selenium by plants. Planta, 206, 284–292.CrossRefGoogle Scholar
  80. Zhang, Y., & Frankenberger, W. T., Jr. (2001). Speciation of selenium in plant water extracts by ion exchange chromatography-hydride generation atomic absorption spectrometry. The Science of the Total Environment, 269, 39–47.CrossRefGoogle Scholar
  81. Zhu, Y.-G., Pilon-Smits, E. A. H., Zhao, F.-J., Williams, P. N., & Meharg, A. A. (2009). Selenium in higher plants: Understanding mechanisms for biofortification and phytoremediation. Trends in Plant Science, 14(8), 436–442.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Elizabeth A. H. Pilon-Smits
    • 1
  • Gary S. Bañuelos
    • 2
  • David R. Parker
    • 3
    Email author
  1. 1.Department of BiologyColorado State UniversityFort CollinsUSA
  2. 2.Water Management Research UnitUnited States Department of Agriculture, Agricultural Research ServiceParlierUSA
  3. 3.Department of Environmental SciencesUniversity of CaliforniaRiversideUSA

Personalised recommendations