Advertisement

Biogeochemistry of Trace Elements: Reactions in Soils

  • Christopher AmrheinEmail author
  • Harvey E. Doner
Chapter
Part of the Global Issues in Water Policy book series (GLOB, volume 5)

Abstract

The trace element of greatest concern in the San Joaquin Valley is Se, although As, B, Mo, V, and U have been found at elevated concentrations in the soils, groundwater, and parent materials. Biogeochemical reactions involving dissolution, precipitation, adsorption, organic complexation, oxidation, and reduction affect the relative mobility and toxicity of these elements. Generally, Se, B, Mo, and V are solubilized under aerobic conditions during irrigation of upland soils. Reduction reactions and organic matter production in flooded soils results in the accumulation of Se, Mo, V, and U in these soils. Boron and As remain soluble under reducing conditions. Changing management to increase aerobic conditions in formerly flooded soils and pond sediments increases Se availability to biota.

Keywords

Specific Adsorption Pond Sediment Toxic Trace Element Evaporation Pond Evaporite Mineral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abrams, M. M., & Burau, R. G. (1989). Fractionation of selenium and detection of selenomethionine in a soil extract. Communications in Soil Science and Plant Analysis, 20, 221–237.CrossRefGoogle Scholar
  2. Amrhein, C., Brown, P. A., & Brown, A. D. (1993). The effects of redox on Mo, U, B, V, and As solubility in evaporation pond soils. Soil Science, 155, 249–255.CrossRefGoogle Scholar
  3. Bañuelos, G. S., Lin, Z. Q., Arroyo, I., & Terry, N. (2005). Selenium volatilization in vegetated agricultural drainage sediment from the San Luis Drain, Central California. Chemosphere, 60(9), 1203–1213.CrossRefGoogle Scholar
  4. Bradford, G. R., Bakhtar, D., & Westcot, D. (1990). Uranium, vanadium, and molybdenum in saline waters. Journal of Environmental Quality, 19, 105–108.CrossRefGoogle Scholar
  5. Cary, E. E., & Allaway, W. H. (1969). The stability of different forms of selenium applied to low-selenium soils. Soil Science Society of America Proceedings, 33, 571–574.CrossRefGoogle Scholar
  6. Chasteen, T. G. (1998). Volatile chemical species of selenium. In W. T. Frankenberger Jr. & R. A. Engelberg (Eds.), Environmental chemistry of selenium (pp. 589–612). New York: Marcel Dekker.Google Scholar
  7. Chilcott, J. E., Westcot, D., Toto, A. L., & Enos, C. A. (1990, December). Water quality in evaporation basins used for the disposal of agricultural subsurface drainage water in the San Joaquin Valley, California (Report). Sacramento: Central Valley Regional Water Quality Control Board.Google Scholar
  8. Doner, H. E., & Zavarin, M. (1997). The role of soil carbonates in trace and minor element chemistry. In K. Auerswald, H. Stanjek, & J. M. Bigham (Eds.), Soils and environment (Vol. 30, pp. 407–422). Reiskirchen: Catena Verlag GMBH.Google Scholar
  9. Duff, M. C., & Amrhein, C. (1996). Uranium(VI) adsorption on goethite and soil in carbonate solutions. Soil Science Society of America Journal, 60, 1393–1400.CrossRefGoogle Scholar
  10. Duff, M. C., Amrhein, C., Bertsch, P. M., & Hunter, D. B. (1997a). The chemistry of uranium in evaporation pond sediment in the San Joaquin Valley, California, USA, using X-ray fluorescence and XANES techniques. Geochimica et Cosmochimica Acta, 61(1), 73–81.CrossRefGoogle Scholar
  11. Duff, M. C., Amrhein, C., & Bradford, G. (1997b). Nature of uranium contamination in the agricultural drainage water evaporation ponds of the San Joaquin Valley, California, USA. Canadian Journal of Soil Science, 77, 459–467.CrossRefGoogle Scholar
  12. Duff, M. C., Hunter, D. B., Bertsch, P. M., & Amrhein, C. (1999). Factors influencing uranium reduction and solubility in evaporation pond sediments. Biogeochemistry, 45, 95–114.Google Scholar
  13. Engberg, R. A., Westcot, D. W., Delamore, M., & Holz, D. D. (1998). Federal and state perspectives on regulation and remediation of irrigation-induced selenium problems. In W. T. Frankenberger Jr. & R. A. Engelberg (Eds.), Environmental chemistry of selenium (pp. 1–25). New York: Marcel Dekker.Google Scholar
  14. Fox, P. M. (2000). Molybdenum in a constructed wetland: Distribution, solubility and accumulation in soil (151pp.). Ph.D. dissertation, University of California, Berkeley.Google Scholar
  15. Fox, P. M., & Doner, H. E. (2002a). Arsenic and molybdenum distributions in saline wetland soil: A comparative study. In 17th world congress of soil science (Paper 988, pp. 1–10), Bangkok.Google Scholar
  16. Fox, P. M., & Doner, H. E. (2002b). Retention and release of trace elements on soil, goethite-coated sand, and calcite in a constructed wetland. Journal of Environmental Quality, 31, 331–338.CrossRefGoogle Scholar
  17. Fox, P. M., & Doner, H. E. (2003). Accumulation, release, and solubility of arsenic, molybdenum, and vanadium in wetland sediments. Journal of Environmental Quality, 32(6), 2428–2435.CrossRefGoogle Scholar
  18. Frankenberger, W. T., Jr., & Arshad, M. (2002). Volatilization of arsenic. In W. T. Frankenberger Jr. & R. A. Engelberg (Eds.), Environmental chemistry of selenium (pp. 363–380). New York: Marcel Dekker.Google Scholar
  19. Gao, S., Fujii, R., Chalmers, A. T., & Tanji, K. K. (2004). Evaluation of adsorbed arsenic and potential contribution to shallow groundwater in Tulare Lake bed area, Tulare Basin, California. Soil Science Society of America Journal, 68(1), 89–95.Google Scholar
  20. Gao, S., Goldberg, S., Herbel, M. J., Chalmers, A. T., & Tanji, K. K. (2006). Sorption processes affecting arsenic solubility in oxidized surface sediments from Tulare Lake bed, California. Chemical Geology, 228(1–3), 33–43.CrossRefGoogle Scholar
  21. Geering, H. R., Cary, E. E., Jones, L. H. P., & Allaway, W. H. (1968). Solubility and redox criteria for the possible forms of selenium in soils. Soil Science Society of America Proceedings, 32, 35–40.CrossRefGoogle Scholar
  22. Glasauer, S., Doner, H. E., & Gehring, A. U. (1995). Adsorption of selenite to goethite in a flow-through reaction chamber. European Journal of Soil Science, 46, 47–52.CrossRefGoogle Scholar
  23. Goldberg, S., & Glaubig, R. A. (1988). Anion sorption on a calcareous, montmorillonitic soil – selenium. Soil Science Society of America Journal, 52, 954–958.CrossRefGoogle Scholar
  24. Goldberg, S., Lesch, S. M., & Suarez, D. L. (2000). Predicting boron adsorption by soils using soil chemical parameters in the constant capacitance model. Soil Science Society of America Journal, 64(4), 1356–1363.CrossRefGoogle Scholar
  25. Goldberg, S., Lesch, S. M., & Saurez, D. L. (2002). Predicting molybdenum adsorption by soils using soil chemical parameters in the constant capacitance model. Soil Science Society of America Journal, 66(6), 1836–1842.CrossRefGoogle Scholar
  26. Goldberg, S., Corwin, D. L., Shouse, P. J., & Suarez, D. L. (2005a). Prediction of boron adsorption by field samples of diverse textures. Soil Science Society of America Journal, 69(5), 1379–1388.CrossRefGoogle Scholar
  27. Goldberg, S., Lesch, S. M., Suarez, D. L., & Basta, N. T. (2005b). Predicting arsenate adsorption by soils using soil chemical parameters in the constant capacitance model. Soil Science Society of America Journal, 69(5), 1389–1398.CrossRefGoogle Scholar
  28. Hingston, F. J., Posner, A. M., & Quirk, J. P. (1971). Competitive adsorption of negatively charged ligands on oxide surfaces. In Discussions of the faraday society. London: The Faraday Society.Google Scholar
  29. Hingston, H. J., Posner, A. M., & Quick, J. P. (1972). Anion adsorption by goethite and gibbsite. I. The role of protons in determining adsorption envelopes. Journal of Soil Science, 23, 177–191.CrossRefGoogle Scholar
  30. Hingston, F. J., Posner, A. M., & Quick, J. P. (1974). Anion adsorption by goethite and gibbsite: II. Desorption of anions from hydrous oxide surfaces. Journal of Soil Science, 25, 16–26.CrossRefGoogle Scholar
  31. Jones, K. C., Lepp, N. W., & Obbard, J. P. (1990). Other metals and metalloids. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 280–321). New York: Wiley.Google Scholar
  32. Karlson, U., & Frankenberger, W. T., Jr. (1989). Accelerated rates of selenium volatilization from California soils. Soil Science Society of America Journal, 53(3), 749–753.CrossRefGoogle Scholar
  33. Lakin, H. W., & Byers, G. G. (1941). Selenium occurrence in certain soils in the United States, with a discussion of related topics: Sixth report (pp. 1–25). Washington, DC: United States Department of Agriculture,Google Scholar
  34. Lemly, A. D. (1993). Guidelines for evaluating selenium data from aquatic monitoring and assessment studies. Environmental Monitoring and Assessment, 28(1), 83–100.CrossRefGoogle Scholar
  35. Levy, D. B., Amrhein, C., & Anderson, M. A. (1994). Wetlands and aquatic processes: Mineral precipitation and trace oxyanion behavior during evaporation of saline waters. Journal of Environmental Quality, 23, 944–954.CrossRefGoogle Scholar
  36. Lipton, D. S. (1991). Associations of selenium in inorganic and organic constituents of soils from a semi-arid region. Ph.D. dissertation, University of California, Berkeley.Google Scholar
  37. Losi, M. E., & Frankenberger, W. T., Jr. (1998). Reduction of selenium oxyanions by Enterobacter cloacae Strain 1a1. In W. T. Frankenberger Jr. & R. A. Engelberg (Eds.), Environmental chemistry of selenium (pp. 515–544). New York: Marcel Dekker.Google Scholar
  38. Maas, E. V. (1990). Crop salt tolerance. In K. K. Tanji (Ed.), Agricultural salinity assessment and management (American Society of Civil Engineers Manuals and Reports of Engineering Practice, No. 71, pp. 262–304). Ralston: ASCE.Google Scholar
  39. Macara, I. G. (1980). Vanadium – An element in search of a role. Trends in Biochemical Sciences, 5(4), 92–94.CrossRefGoogle Scholar
  40. Manning, B. A., & Goldberg, S. (1996a). Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite. Clays and Clay Minerals, 44(5), 609–623.CrossRefGoogle Scholar
  41. Manning, B. A., & Goldberg, S. (1996b). Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Science Society of America Journal, 60(1), 121–131.CrossRefGoogle Scholar
  42. Martens, D. A., & Suarez, D. L. (1997). Selenium speciation of soil/sediment determined with sequential extractions and hydride generation atomic absorption spectrophotometry. Environmental Science and Technology, 31(1), 133–139.CrossRefGoogle Scholar
  43. Neal, R. H., & Sposito, G. (1989). Selenate adsorption on alluvial soils. Soil Science Society of America Journal, 53(1), 70–74.CrossRefGoogle Scholar
  44. Neal, R. H., Sposito, G., Holtzclaw, K. M., & Traina, S. J. (1987). Selenite adsorption on alluvial soils: I. Soil composition and pH effects. Soil Science Society of America Journal, 51, 1161–1165.CrossRefGoogle Scholar
  45. Ohlendorf, H. M., Hothem, R. L., Bunck, C. M., Aldrich, T. W., & Moore, J. F. (1986). Relationships between selenium concentrations and avian reproduction. In Transactions of 51st North American wildlife and natural resource conference, Reno.Google Scholar
  46. Ohlendorf, H. M., Skorupa, J. P., Saiki, M. K., & Barnum, D. A. (1993, July 21–23). Food-chain transfer of trace elements to wildlife. In R. G. Allen, & C. M. U. Neale (Eds.), Management of irrigation and drainage systems: Integrated perspectives, Proceedings of the 1993 National Conference on Irrigation and Drainage Engineering. Park City, UT (pp. 596–603). New York: American Society of Civil Engineers.Google Scholar
  47. Ong, C. G., & Tanji, K. K. (1993). Evaporative concentration of trace-elements in a multicell agricultural evaporation pond. Journal of Agricultural and Food Chemistry, 41(9), 1507–1510.CrossRefGoogle Scholar
  48. Ong, G., Herbel, M. J., Mitchell, J., Dahlgren, R. A., & Tanji, K. K. (1997). Trace element (Se, As, Mo, B) contamination of evaporites in hypersaline agricultural evaporation ponds. Environmental Science and Technology, 31(3), 831–836.CrossRefGoogle Scholar
  49. Peryea, F. J., Bingham, F. T., & Rhoades, J. D. (1985). Mechanisms for boron regeneration. Soil Science Society of America Journal, 49, 840–843.CrossRefGoogle Scholar
  50. Pittiglio, S. L. (2003). The role of magnesium minerals in boron adsorption (104pp.). M.S. thesis, University of California, Berkeley.Google Scholar
  51. Pizzini, E. J. (2007). An examination of selenium interactions between soil and water at environmentally relevant concentrations (184pp.). Ph.D. dissertation, University of California, Berkeley.Google Scholar
  52. Reeder, R. J., Lamble, G. M., Lee, J. F., & Staudt, W. J. (1994). Mechanism of SeO4 2− substitution in calcite: An XAFS study. Geochimica et Cosmochimica Acta, 58, 5639–5646.CrossRefGoogle Scholar
  53. Rhoades, J. D., Ingvalson, R. D., & Hatcher, J. T. (1970). Adsorption of boron by ferromagnesian minerals and magnesium hydroxide. Soil Science Society of America Proceedings, 34, 938–941.CrossRefGoogle Scholar
  54. Singh, M., Singh, N., & Relan, P. S. (1981). Adsorption and desorption of selenite and selenate selenium on different soils. Soil Science, 132, 134–141.CrossRefGoogle Scholar
  55. Strawn, D., Doner, H. E., Zavarin, M., & McHugo, S. (2002). Microscale investigation into the geochemistry of arsenic, selenium, and iron in soil developed in pyritic shale materials. Geoderma, 108(3–4), 237–257.CrossRefGoogle Scholar
  56. Sun, X. H., & Doner, H. E. (1996). An investigation of arsenate and arsenite bonding structures on goethite by FTIR. Soil Science, 161(12), 865–872.CrossRefGoogle Scholar
  57. Sun, X. H., & Doner, H. E. (1998). Adsorption and oxidation of arsenite on goethite. Soil Science, 163, 278–287.CrossRefGoogle Scholar
  58. Sun, X. H., Doner, H. E., & Zavarin, M. (1999). Spectroscopy study of arsenite [As(III)] oxidation on Mn-substituted goethite. Clays and Clay Minerals, 47(4), 474–480.CrossRefGoogle Scholar
  59. Thompson, A., Parker, D. R., & Amrhein, C. (2003). Selenate partitioning in field-situated constructed wetland mesocosms. Ecological Engineering, 20(1), 17–30.CrossRefGoogle Scholar
  60. Tokunaga, T. K., Lipton, D. S., Benson, S. M., Yee, A. W., Oldfather, J. M., Duckart, E. C., Johannis, P. W., & Halvorsen, K. E. (1991). Soil selenium fractionation, depth profiles and time trends in a vegetated site at Kesterson Reservoir. Water, Air, and Soil Pollution, 57–58, 31–41.CrossRefGoogle Scholar
  61. Willsky, G. R. (1990). Vanadium in the biosphere. In N. D. Chasteen (Ed.), Vanadium in biological systems, physiology, and biochemistry. Boston: Kluwer Academic Publisher.Google Scholar
  62. WPHA. (2002). Western fertilizer handbook, 9th Ed. Western Plant Health Association. Long Grove, Illinois: Waverland Press, Inc.Google Scholar
  63. Wright, M. T., Parker, D. R., & Amrhein, C. (2003). Critical evaluation of the ability of sequential extraction procedures to quantify discrete forms of selenium in sediments and soils. Environmental Science and Technology, 37(20), 4709–4716.CrossRefGoogle Scholar
  64. Zavarin, M. (1999). Sorptive properties of synthetic and soil carbonates for selenium, nickel, and manganese (279pp.). Ph.D. dissertation, University of California, Berkeley.Google Scholar
  65. Zawislanski, P. T., & Zavarin, M. (1996). Nature and rates of selenium transformations: A laboratory study of Kesterson Reservoir soils. Soil Science Society of America Journal, 60, 791–800.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Environmental SciencesUniversity of CaliforniaRiversideUSA
  2. 2.Department of Environmental Sciences, Policy and ManagementUniversity of CaliforniaBerkeleyUSA

Personalised recommendations