Advertisement

Membrane Desalination of Agricultural Drainage Water

  • Yoram CohenEmail author
  • Brian McCool
  • Anditya Rahardianto
  • Myung-man Kim
  • Jose Faria
Chapter
Part of the Global Issues in Water Policy book series (GLOB, volume 5)

Abstract

First application of reverse osmosis (RO) membranes for brackish water desalination began the San Joaquin Valley (SJV) in 1965 the technology has matured over time. RO desalting has the potential of addressing both drainage and water supply problems in the SJV. In an integrated irrigation management scheme, RO desalting systems would recover a significant portion of drainage water as high quality product water that could augment fresh water supply. At the same time, the remaining (concentrated) portion would have a significantly reduced volume, enabling discharge to a terminal evaporation pond or final management by other environmentally and economically feasible means(e.g., deep-well injection, processing with industrial thermal evaporators, etc.).

Keywords

Total Dissolve Solid Reverse Osmosis Feed Water Reverse Osmosis Membrane Water Recovery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

Authors acknowledge the contribution of their colleague J. Glater.

References

  1. Abulnour, A. G., Sorour, M. H., & Talaat, H. A. (2003). Comparative economics for desalting of agricultural drainage water (ADW). Desalination, 152, 353.CrossRefGoogle Scholar
  2. Aidan, A., Mehrvar, M., Ibrahim, T. H., & Nenov, V. (2007). Particulates and bacteria removal by ceramic microfiltration, UV photolysis, and their combination. Journal of Environmental Science and Health Part A – Toxic/Hazardous Substance & Environmental Engineering, 42, 895.Google Scholar
  3. Al-Shammiri, M., Safar, M., & Al-Dawas, M. (2000). Evaluation of two different antiscalants in real operation at the Doha research plant. Desalination, 128, 1.CrossRefGoogle Scholar
  4. Amjad, Z. (1985). Applications of antiscalants to control calcium-sulfate scaling in reverse-osmosis systems. Desalination, 54, 263.CrossRefGoogle Scholar
  5. Amjad, Z. (1993). Reverse osmosis: Membrane technology, water chemistry, and industrial applications. New York: Van Nostrand Reinhold.Google Scholar
  6. Antoniuk, D., & McCutchan, J. W. (1973). Desalting irrigation field drainage water by reverse osmosis, Firebaugh, California (Desalination Report No. 54, UCLA-ENG-7368). California Water Resources Center. Los Angeles, CA: UCLA School of Engineering and Applied Science.Google Scholar
  7. ASTM. (2002). ASTM D 4516–00 method, standard practice for standardizing reverse osmosis performance data. American Society of Testing Materials, 26, 42.Google Scholar
  8. Austin, A. E., Miller, J. F., Vaughan, D. A., & Kircher, I. F. (1975). Chemical additives for calcium sulfate scale control. Desalination, 16, 345.CrossRefGoogle Scholar
  9. AWWA. (1999). Water quality and treatment: A handbook of community water supplies (5th ed.). New York: McGraw-Hill.Google Scholar
  10. Bond, R., Veerapaneni, S., Rackley, I., Ventimiglia, A., Pack, W., & Leising, J. (2003). Reverse osmosis and vapor compression brine distillation to treat a shallow brackish groundwater in Las Vegas Valley. In Proceedings, 2003 annual conference of American Water Works Association (pp. 1084). Anaheim, CA.Google Scholar
  11. Bonnelye, V., Sanz, M. A., Francisci, L., Beltran, F., Cremer, G., Colcuera, R., & Laraudogoitia, J. (2005). Curacao, Netherlands Antilles: A successful example of boron removal on a seawater desalination plant. Desalination, 205, 200.CrossRefGoogle Scholar
  12. Brehant, A., Bonnelye, V., & Perez, M. (2002). Comparison of MF/UF pretreatment with conventional filtration prior to RO membranes for surface seawater desalination. Desalination, 144, 353.CrossRefGoogle Scholar
  13. Bruchet, A., & Laine, J. M. (2005). Efficiency of membrane processes for taste and odor removal. Water Science and Technology, 51, 257.Google Scholar
  14. Chen, J. C., Li, Q., & Elimelech, M. (2004). In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration. Advances in Colloid and Interface Science, 107, 83.CrossRefGoogle Scholar
  15. Chu, L. B., & Li, S. (2006). Filtration capability and operational characteristics of dynamic membrane bioreactor for municipal wastewater treatment. Separation and Purification Technology, 51, 173.CrossRefGoogle Scholar
  16. Chuang, S. H., Chang, W. C., Chang, T. C., & You, S. J. (2007). Improving the removal of anions by coagulation and dissolved air flotation in wastewater reclamation. Environmental Technology, 27, 493.CrossRefGoogle Scholar
  17. Cohen, Y., & McCool, B. C. (2007). Critical process requirements for membrane desalination of Agricultural Drainage in the San Joaquin Valley (Final Project Report, Project Period: 9/01/04-8/31/07, Interagency Agreement 4600003343). Agricultural Drainage Program, California Department of Water Resources, 3374 Shields Avenue, Fresno, California. Water Technology Research Center, University of California, Los Angeles.Google Scholar
  18. Cohen, Y. (2008). Membrane desalination of agricultural drainage water: Water recovery enhancement and brine minimization (Technical Completion Report SD001). Berkeley: University of California Water Resources Center, University of California. http://www.escholarship.org/uc/item/926140wtGoogle Scholar
  19. Cote, P., Cadera, J., Coburn, J., & Munro, A. (2001). A new immersed membrane for pretreatment to reverse osmosis. Desalination, 139, 229.CrossRefGoogle Scholar
  20. Dalvi, A. G., Mohammad, M. N. K., Al-Sulami, S., Sahul, K., & Al-Rasheed, R. (2000). Role of chemical constituents in recycle brine on the performance of scale control additives in MSF plants. Desalination, 129, 173.CrossRefGoogle Scholar
  21. Drak, A., Glucina, K., Busch, M., Hasson, D., Laine, J. M., & Semiat, R. (2000). Laboratory technique for predicting the scaling propensity of RO feed waters. Desalination, 132, 233.CrossRefGoogle Scholar
  22. DWR (California Department of Water Resources). (2000). Evaluation of the 1990 Drainage Management Plan for the Westside San Joaquin Valley, California. Report of San Joaquin Valley Drainage Implementation Program and University of California Ad Hoc Coordination Committee.Google Scholar
  23. DWR (California Department of Water Resources). (2003). San Joaquin Valley, Drainage Monitoring Program 2000 (including supplemental electronic data for 2003 and 2004). Report of State of California, The Resources Agency, Department of Water Resources, San Joaquin District.Google Scholar
  24. Ebrahim, S., Abdel-Jawad, M., Bou-Hamad, S., & Safar, M. (2001). Fifteen years of R&D program in seawater desalination at KISR Part I. Pretreatment technologies for RO systems. Desalination, 135, 141.CrossRefGoogle Scholar
  25. Enzweiler, R. J. (2005). Energy-efficient process for using membrane technology to treat and recycle agricultural drainage water. Report for California Energy Commission, Energy Innovations Small Grant (EISG) Program. Moraga, CA.Google Scholar
  26. Gabelich, C. J., Yun, T. I., Coffey, B. M., & Suffet, I. H. M. (2003). Pilot-scale testing of reverse osmosis using conventional treatment and microfiltration. Desalination, 154, 207.CrossRefGoogle Scholar
  27. Gabelich, C. J., Franklin, J. C., Cohen, Y., & Suffet, I. H. M. (2006). Reverse osmosis pretreatment: Challenges with conventional treatment, In K. J. Howe (Ed.), Membrane treatment for drinking water & reuse applications: A compendium of peer-reviewed papers. Denver: American Water Works Association.Google Scholar
  28. Gabelich, C. J., Williams, M. D., Rahardianto, A., Franklin, C. J., & Cohen, Y. (2007). High-recovery reverse osmosis desalination using intermediate chemical demineralization. Journal of Membrane Science, 301, 131.CrossRefGoogle Scholar
  29. Gaid, K., & Treal, Y. (2007). The desalination of waters by inverse osmosis: The experience of Veolia Water. Desalination, 203, 1.CrossRefGoogle Scholar
  30. Gao, S., Tanji, K. K., Dahlgren, R. A., Ryu, J., Herbel, M. J., & Higashi, R. M. (2007). Chemical status of selenium in evaporation basins for disposal of agricultural drainage. Chemosphere, 69, 585.CrossRefGoogle Scholar
  31. Ghafour, E. E. A. (2003). Enhancing RO system performance utilizing antiscalants. Desalination, 153, 149.CrossRefGoogle Scholar
  32. Glater, J. (1998). The early history of reverse osmosis membrane development. Desalination, 117, 297.CrossRefGoogle Scholar
  33. Graveland, A., Vandijk, J. C., Demoel, P. J., & Oomen, J. (1983). Developments in water softening by means of pellet reactors. Journal of American Water Works Association, 75, 619.Google Scholar
  34. Harries, R. C. (1985). A field trial of seeded reverse-osmosis for the desalination of a scaling-type mine water. Desalination, 56, 227.CrossRefGoogle Scholar
  35. Hartshorn, J. K. (1985, March/April). Down the drain at Kesterson. In Western water (pp. 4–5). Sacramento, CA: Western Water Education Foundation.Google Scholar
  36. Hasson, D., Semiat, R., Bramson, D., Busch, M., & Limoni-Relis, B. (1998). Suppression of CaCO3 scale deposition by antiscalants. Desalination, 118, 285.CrossRefGoogle Scholar
  37. Hasson, D., Drak, A., & Semiat, R. (2001). Inception of CaSO4 scaling on RO membranes at various water recovery levels. Desalination, 139, 73.CrossRefGoogle Scholar
  38. Hydranautics. (2008). Chemical pretreatment of RO/NF (Technical Application Bulletin No. 111 Rev. B). Oceanside: Nitto Denko. http://www.membranes.com/docs/tab/TAB111.pdf
  39. Johnson, J. S., McCutchan, J. W., & Bennion, D. N. (1969, July). Three and one-half years experience with reverse osmosis at Coalinga (California, Report #69-45). Los Angeles: UCLA School of Engineering and Applied Science.Google Scholar
  40. Juby, G. J. G., & Schutte, C. F. (2000). Membrane life in a seeded-slurry reverse osmosis system. Water SA, 26, 239.Google Scholar
  41. Jun, L., McClain, B., Seah, A., & Mukhopadhyay, D. (2004). High-purity water system upgrade in Singapore using high-efficiency RO. Ultrapure Water, 21, 4.Google Scholar
  42. Kang, S. T., Subramani, A., Hoek, E. M. V., Deshusses, M. A., & Matsumoto, M. R. (2004). Direct observation of biofouling in cross-flow microfiltration: Mechanisms of deposition and release. Journal of Membrane Science, 244, 151.CrossRefGoogle Scholar
  43. Kim, M., Au, J., Rahardianto, A., Glater, J., Cohen, Y., Gerringer, F. W., & Gabelich, C. J. (2009). Impact of conventional water treatment coagulants on mineral scaling in RO desalting of brackish water. Industrial and Engineering Chemistry Research, 48(6), 3126–3135.Google Scholar
  44. Klepetsanis, P. G., & Koutsoukos, P. G. (1998). Kinetics of calcium sulfate formation in aqueous median: Effect of organophosphorous compound. Journal of Crystal Growth, 193, 156.CrossRefGoogle Scholar
  45. Knoell, T., Safarik, J., Cormack, T., Riley, R., Linn, T., & Ridgway, H. (1999). Biofouling potentials of microporous polysulfone membranes containing a sulfonated polyether-ethersulfone/ polyethersulfone block copolymer: Correlation of membrane surface properties with bacterial attachment. Journal of Membrane Science, 157, 117.CrossRefGoogle Scholar
  46. Kruithof, J. C., Schippers, J. C., Kamp, P. C., Folmer, H. C., & Hofman, J. A. M. H. (1998). Integrated multi-objective membrane systems for surface water treatment: Pretreatment of reverse osmosis by conventional treatment and ultrafiltration. Desalination, 117, 37.CrossRefGoogle Scholar
  47. Lee, S., & Lee, C. H. (2000). Effect of operating conditions on CaSO4 scale formation mechanism in nanofiltration for water softening. Water Research, 34, 3854.CrossRefGoogle Scholar
  48. Lee, R. W., Glater, J., Cohen, Y., Martin, C., Kovac, K., Milobar, M. N., et al. (2003). Low-pressure RO membrane desalination of agricultural drainage water. Desalination, 155, 109.CrossRefGoogle Scholar
  49. Li, H., Fane, G. A., Coster, H. G. L., & Vigneswaran, S. (1998). Direct observation of particle deposition on the membrane surface during crossflow microfiltration. Journal of Membrane Science, 149, 83.CrossRefGoogle Scholar
  50. Li, H., Fane, A. G., Coster, H. G. L., & Vigneswaran, S. (2003). Observation of deposition and removal behavior of submicron bacteria on the membrane surface during crossflow microfiltration. Journal of Membrane Science, 217, 29.CrossRefGoogle Scholar
  51. Liu, S.-T., & Nancollas, G. (1975). A kinetic and morphological study of the seeded growth of calcium sulfate dihydrate in the presence of additives. Journal of Colloid and Interface Science, 52, 593.CrossRefGoogle Scholar
  52. Loeb, S. (1966, June). A composite tubular assembly for reverse osmosis desalination (Report No 66–40). Los Angeles: Department of Engineering, University of California.Google Scholar
  53. Loeb, S., & Selover, E. (1967). Sixteen months of field experience on the Coalinga pilot plant. Desalination, 2, 75.CrossRefGoogle Scholar
  54. Loewenthal, R. E., Wiechers, H. N. S., & Marais, G. V. R. (1986). Softening and stabilization of municipal waters. Pretoria: Water Research Commission of South Africa.Google Scholar
  55. Lyster, E., & Cohen, Y. (2007). Numerical study of concentration polarization in a rectangular reverse osmosis membrane channel: Permeate flux variation and hydrodynamic end effects. Journal of Membrane Science, 303, 140.CrossRefGoogle Scholar
  56. Mairal, A. P., Greenberg, A. R., Krantz, W. B., & Bond, L. J. (1999). Real-time measurement of inorganic fouling of RO desalination membranes using ultrasonic time-domain reflectometry. Journal of Membrane Science, 159, 185.CrossRefGoogle Scholar
  57. McCool, B. C. (2007). The feasibility of reverse osmosis desalination of agricultural drainage water in the San Joaquin Valley. M.S. thesis. University of California, Los Angeles.Google Scholar
  58. Molseed, A. C., Hunt, J. R., & Cowin, M. W. (1987). Desalination of agricultural drainage return water. Part I: Operational experiences with conventional and nonconventional pretreatment methods. Desalination, 61, 249.CrossRefGoogle Scholar
  59. Mores, W. D., & Davis, R. H. (2001). Direct visual observation of yeast deposition and removal during microfiltration. Journal of Membrane Science, 189, 217.CrossRefGoogle Scholar
  60. Mott, H. V., Singh, S., & Kondapally, V. R. (1993). Factors affecting radium removal using mixed iron-manganese oxides. Journal of American Water Works Association, 85, 114.Google Scholar
  61. Murabak, A. (1998). A kinetic model for scale formation in MSF desalination plants: Effects of antiscalants. Desalination, 120, 23.CrossRefGoogle Scholar
  62. Nandy, T., Manekar, P., Dhodapkar, R., Pophali, G., & Devotta, S. (2007). Water conservation through implementation of ultrafiltration and reverse osmosis system with recourse to recycling of effluent in textile industry – A case study. Resources Conservation and Recycling, 51, 64.CrossRefGoogle Scholar
  63. Ning, R. Y. (2002). Discussion of silica speciation, fouling, control and maximum reduction. Desalination, 151, 67.CrossRefGoogle Scholar
  64. Ning, R. Y., & Troyer, T. L. (2007). Colloidal fouling of RO membranes following MF/UF in the reclamation of municipal wastewater. Desalination, 208, 232.CrossRefGoogle Scholar
  65. OLI. (2006). OLI Analyzer 2.0. OLI Systems, Morris Plains, NJ, USA.Google Scholar
  66. Oner, M., Dogan, O., & Oner, G. (1998). The influence of polyelectrolytes architecture on calcium sulfate dihydrate growth retardation. Journal of Crystal Growth, 186, 427.CrossRefGoogle Scholar
  67. Oren, Y., Katz, V., & Daltrophe, N. C. (2001). Improved compact accelerated precipitation softening (CAPS). Desalination, 139, 155.CrossRefGoogle Scholar
  68. Paranjape, S., Reardon, R., & Foussereau, X. (2003). In Pretreatment technology for reverse osmosis membrane used in wastewater reclamation application- Past, present and future – Literature review. 2003 annual technical exhibition and conference. Los Angeles, CA: Water Environment Federation.Google Scholar
  69. Qin, J. J., Oo, M. H., Wai, M. N., & Kekre, K. A. (2005). TOC removal in reclamation of municipal wastewater by RO. Separation and Purification Technology, 46, 125.CrossRefGoogle Scholar
  70. Rahardianto, A. (2009). High recovery desalting of brackish water. Dissertation, School of Engineering, UCLA, Los Angeles.Google Scholar
  71. Rahardianto, A., Shih, W. Y., Lee, R. W., & Cohen, Y. (2006). Diagnostic characterization of gypsum scale formation and control in RO membrane desalination of brackish water. Journal of Membrane Science, 279, 655.CrossRefGoogle Scholar
  72. Rahardianto, A., Gao, J., Gabelich, C. J., Williams, M. D., & Cohen, Y. (2007). High recovery membrane desalting of low-salinity brackish water: Integration of accelerated precipitation softening with membrane RO. Journal of Membrane Science, 289, 123.CrossRefGoogle Scholar
  73. Rahardianto, A., McCool, B. C., & Cohen, Y. (2008). Reverse osmosis desalting of inland brackish water of high gypsum scaling propensity: Kinetics and mitigation of membrane mineral scaling. Environmental Science and Technology, 42, 4292.CrossRefGoogle Scholar
  74. Rautenbach, R., & Linn, T. (1996). High-pressure reverse osmosis and nanofiltration, a “zero discharge” process combination for the treatment of waste water with severe fouling/scaling potential. Desalination, 105, 63.CrossRefGoogle Scholar
  75. Rautenbach, R., & Voenkaul, K. (2001). Pressure driven membrane processes – the answer to the need of a growing world population for quality water supply and waste water disposal. Separation and Purification Technology, 22–23, 193.CrossRefGoogle Scholar
  76. Rautenbach, R., Linn, T., & Eilers, L. (2000). Treatment of severely contaminated waste water by a combination of RO, high-pressure RO and NF - potential and limits of the process. Journal of Membrane Science, 174, 231.CrossRefGoogle Scholar
  77. Rosenstein, L. (1936). U.S. Patent Office, No. 2,038,316. http://www.google.com/patents/US2038316.
  78. Saad, M. A. (2004). Early discovery of RO membrane fouling and real-time monitoring of plant performance for optimizing cost of water. Desalination, 165, 183.CrossRefGoogle Scholar
  79. Seewoo, S., Van Hille, R., & Lewis, A. (2004). Aspects of gypsum precipitation in scaling waters. Hydrometallurgy, 75, 135.CrossRefGoogle Scholar
  80. Seigworth, A., Ludlum, R., & Reahl, E. (1995). Case-study–integrating membrane processes with evaporation to achieve economical zero liquid discharge at the Doswell combined-cycle facility. Desalination, 102, 81.CrossRefGoogle Scholar
  81. Semiat, R., Sutzkover, I., & Hasson, D. (2003). Scaling of RO membranes from silica supersaturated solutions. Desalination, 157, 169.CrossRefGoogle Scholar
  82. Sethi, S., Drewes, J., Xu, P., & Sutzkover, P. (2006). Assessment of emerging desalination and concentrate treatment methods. In Texas AWWA, Texas Water 2006, San Antonio.Google Scholar
  83. Shah, V. J., Devmurari, C. V., Joshi, S. V., Trivedi, J. J., Rao, A. P., & Ghosh, P. K. (2004). A case study of long-term RO plant operation without chemical pretreatment. Desalination, 161, 137.CrossRefGoogle Scholar
  84. Shih, W.-Y., Albrecht, K., Glater, J., & Cohen, Y. (2004). A dual-probe approach for evaluation of gypsum crystallization in response to antiscalant treatment. Desalination, 169, 213.Google Scholar
  85. Shih, W.-Y., Rahardianto, A., Lee, R. W., & Cohen, Y. (2005). Morphometric characterization of calcium sulfate dihydrate (gypsum) scale on reverse osmosis membranes. Journal of Membrane Science, 252, 253.CrossRefGoogle Scholar
  86. Shih, W.-Y., Gao, J., Rahardianto, A., Glater, J., Cohen, Y., & Gabelich, C. J. (2006). Ranking of antiscalant performance for gypsum scale suppression in the presence of residual aluminum. Desalination, 196, 280.CrossRefGoogle Scholar
  87. Sluys, J. T. M., Verdoes, D., & Hanemaaijer, J. H. (1996). Water treatment in a membrane-assisted crystallizer (MAC). Desalination, 104, 135.CrossRefGoogle Scholar
  88. Smith, B. E. (1992). Desalting and ground water management in the San Joaquin Valley, California. Desalination, 87, 151.CrossRefGoogle Scholar
  89. Smith, B. E., Price, D. B., Kasper, D. R., & Everest, W. R. (1981). Agricultural wastewater desalting in California: DWR test facility description. Sacramento: Department of Water Resources.Google Scholar
  90. Spiegler, K. S., & Kedem, O. (1966). Thermodynamic of hyperfiltration (reverse osmosis): Criteria for efficient membranes. Desalination, 1, 311.CrossRefGoogle Scholar
  91. Stevens, D., & Loeb, S. (1967). Reverse osmosis desalination costs derived from the Coalinga pilot plant operation. Desalination, 2, 56.CrossRefGoogle Scholar
  92. Tadros, M. E., & Mayes, I. (1979). Linear growth rates of calcium sulfate dihydrate crystals in the presence of additives. Journal of Colloid and Interface Science, 72, 245.CrossRefGoogle Scholar
  93. Taniguchi, Y. (1997). An overview of pretreatment technology for reverse osmosis desalination plants in Japan. Desalination, 110, 21.CrossRefGoogle Scholar
  94. Uchymiak, M., Rahardianto, A., Lyster, E., Glater, J., & Cohen, Y. (2007). A novel RO ex situ scale observation detector (EXSOD) for mineral scale characterization and early detection. Journal of Membrane Science, 291, 86.CrossRefGoogle Scholar
  95. van der Hoek, J. P., Rijnbende, D. O., Lokin, C. J. A., Bonne, P. A. C., Loonen, M. T., & Hofman, J. (1998). Electrodialysis as an alternative for reverse osmosis in an integrated membrane system. Desalination, 117, 159.CrossRefGoogle Scholar
  96. Vrouwenvelder, J. S., van Paassen, J. A. M., Wessels, L. P., van Dam, A. F., & Bakker, S. M. (2006). The membrane fouling simulator: A practical tool for fouling prediction and control. Journal of Membrane Science, 281, 316.CrossRefGoogle Scholar
  97. Walinsky, S. W., & Morton, B. J. (1979). Chemistry of alkaline scale inhibition in seawater desalination by flocon antiscalant 247. Desalination, 31, 289.CrossRefGoogle Scholar
  98. Walkinsky, S. W, Morton, B. J., & O’Neill, J. J. (1983). In Symposium on crystal growth from solution. Washington, DC: American Chemical Society Meeting.Google Scholar
  99. Weijen, M. P. C., & Rosmalen, G. M. V. (1985). The influence of various polyelectrolytes on the precipitation of gypsum. Desalination, 54, 239.CrossRefGoogle Scholar
  100. Wilf, M., & Klinko, K. (1999). Improved performance and cost reduction of RO seawater systems using pretreatment. Membrane Technology, 113, 5.CrossRefGoogle Scholar
  101. Williams, C., & Alemi, M. (2002). Agricultural drainage in the San Joaquin Valley: A gap analysis. Sacramento, CA: San Joaquin Valley Drainage Implementation Program.Google Scholar
  102. Zydney, A. L. (1997). Stagnant film model for concentration polarization in membrane systems. Journal of Membrane Science, 130, 275.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Yoram Cohen
    • 1
    Email author
  • Brian McCool
    • 1
  • Anditya Rahardianto
    • 1
  • Myung-man Kim
    • 1
  • Jose Faria
    • 2
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaLos AngelesUSA
  2. 2.California Department of Water ResourcesSan Joaquin District, FresnoUSA

Personalised recommendations