Skip to main content

Synapsid Diversity and the Rock Record in the Permian-Triassic Beaufort Group (Karoo Supergroup), South Africa

  • Chapter
  • First Online:
Early Evolutionary History of the Synapsida

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

This study investigates diversity patterns of Synapsida in the Permian-Triassic sequence of the Karoo Basin, South Africa. Permian-Triassic synapsids represent the dominant terrestrial tetrapods of their time and play a central role in assessing the impact of the end-Permian mass extinction on terrestrial ecosystems. On the regional scale of the Karoo Basin, synapsid diversity shows a mid-Permian extinction and a pronounced extinction event at the end of the Permian, whereas the subclades of Synapsida exhibit clade-specific diversity patterns. Taxonomic diversity estimates (TDEs) of Synapsida and its subclades are not significantly correlated with outcrop area for the complete time series. However, after exclusion of the Lystrosaurus Assemblage Zone from all data series, the TDEs of the majority of synapsid subclades show statistically significant strong positive correlations with outcrop area. Nonetheless, diversity residuals, resulting from modeled diversity estimates, exhibit clade-specific patterns with varying support for a mid-Permian event and strong support for an end-Permian extinction. The results confirm studies at the global scale and imply that synapsid diversity in the Karoo Basin is at least partially biased by the Permian-Triassic terrestrial rock record. Moreover, Anomodontia, the most speciose clade of non-mammalian synapsids, is not the sole driver of the synapsid diversity signal. Instead, there seems to be a general synapsid pattern, with each subclade diverging from this pattern to varying degrees for clade-specific reasons. Thus, despite the obvious rock record bias, the end-Permian extinction maintains its major impact on synapsid diversity and therefore on the composition and structure of past and present terrestrial ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdala, F., & Ribeiro, A. M. (2010). Distribution and diversity patterns of Triassic cynodonts (Therapsida, Cynodontia) in Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology, 286(3–4), 202–217.

    Article  Google Scholar 

  • Allin, E. F. (1975). Evolution of the mammalian middle ear. Journal of Morphology, 147, 403–438.

    Article  Google Scholar 

  • Alroy, J. (2000). New methods for quantifying macroevolutionary patterns and processes. Paleobiology, 26, 707–733.

    Article  Google Scholar 

  • Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fursich, F. T., et al. (2001). Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences of the United States of America, 98, 6261–6266.

    Article  Google Scholar 

  • Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fursich, F. T., Harries, P. J., et al. (2008). Phanerozoic trends in the global diversity of marine invertebrates. Science, 321, 97–100.

    Article  Google Scholar 

  • Angielczyk, K. D., Roopnarine, P. D., & Wang, S. C. (2005). Modeling the role of primary productivity disruption in end-Permian extinctions, Karoo Basin, South Africa. New Mexico Museum of Natural History and Science Bulletin, 30, 16–23.

    Google Scholar 

  • Barrett, P. M., McGowan, A. J., & Page, V. (2009). Dinosaur diversity and the rock record. Proceedings of the Royal Society B: Biological Sciences, 276, 2667–2674.

    Article  Google Scholar 

  • Benson, R. B. J., Butler, R. J., Lindgren, J., & Smith, A. S. (2010). Mesozoic marine tetrapod diversity: Mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates. Proceedings of the Royal Society B-Biological Sciences, 277, 829–834.

    Article  Google Scholar 

  • Benton, M. J. (1985). Mass extinction among non-marine tetrapods. Nature, 316, 811–814.

    Article  Google Scholar 

  • Benton, M. J. (1995). Diversification and extinction in the history of life. Science, 268, 52–58.

    Article  Google Scholar 

  • Benton, M. J. (2009). The fossil record: Biological or geological signal? In D. Sepkoski & M. Ruse (Eds.), The paleobiological revolution: Essays on the growth of modern paleontology (pp. 43–59). Chicago: University of Chicago Press.

    Chapter  Google Scholar 

  • Benton, M. J., & Emerson, B. C. (2007). How did life become so diverse? The dynamics of diversification according to the fossil record and molecular phylogenetics. Palaeontology, 50, 23–40.

    Article  Google Scholar 

  • Benton, M. J., Tverdokhlebov, V. P., & Surkov, M. V. (2004). Ecosystem remodelling among vertebrates at the Permian-Triassic boundary in Russia. Nature, 432, 97–100.

    Article  Google Scholar 

  • Botha, J., & Smith, R. M. H. (2006). Rapid vertebrate recuperation in the Karoo Basin of South Africa following the end-Permian extinction. Journal of African Earth Sciences, 45, 502–514.

    Article  Google Scholar 

  • Botha, J., & Smith, R. M. H. (2007). Lystrosaurus species composition across the Permo-Triassic boundary in the Karoo Basin of South Africa. Lethaia, 40, 125–137.

    Article  Google Scholar 

  • Botha-Brink, J., Huttenlocker, A. K., & Modesto, S. P. (2013). Vertebrate paleontology of Nooitgedacht 68: A Lystrosaurus maccaigi-rich Permo-Triassic boundary locality in South Africa. In C. F. Kammerer, K. D. Angielczyk, & J. Fröbisch (Eds.), Early evolutionary history of the Synapsida (pp. 289–304). Dordrecht: Springer.

    Google Scholar 

  • Butler, R. J., Barrett, P. M., Nowbath, S., & Upchurch, P. (2009). Estimating the effects of sampling biases on pterosaur diversity patterns: Implications for hypotheses of bird/pterosaur competitive replacement. Paleobiology, 35, 432–446.

    Article  Google Scholar 

  • Butler, R. J., Benson, R. B. J., Carrano, M. T., Mannion, P. D., & Upchurch, P. (2010). Sea level, dinosaur diversity and sampling biases: Investigating the ‘common cause’ hypothesis in the terrestrial realm. Proceedings of the Royal Society B-Biological Sciences, 278, 1165–1170.

    Article  Google Scholar 

  • Cluver, M. A. (1978). The skeleton of the mammal-like reptile Cistecephalus with evidence of a fossorial mode of life. Annals of the South African Museum, 76, 213–246.

    Google Scholar 

  • Crampton, J. S., Beu, A. G., Cooper, R. A., Jones, C. M., Marshall, B., & Maxwell, P. A. (2003). Estimating the rock volume bias in paleobiodiversity studies. Science, 301, 358–360.

    Article  Google Scholar 

  • Fara, E. (2002). Sea-level variations and the quality of the continental fossil record. Journal of the Geological Society, 159, 489–491.

    Article  Google Scholar 

  • Fröbisch, J. (2006). Locomotion in derived dicynodonts (Synapsida, Anomodontia): A functional analysis of the pelvic girdle and hind limb of Tetragonias njalilus. Canadian Journal of Earth Sciences, 43, 1297–1308.

    Article  Google Scholar 

  • Fröbisch, J. (2007). The cranial anatomy of Kombuisia frerensis Hotton (Synapsida, Dicynodontia) and a new phylogeny of anomodont therapsids. Zoological Journal of the Linnean Society, 150, 117–144.

    Article  Google Scholar 

  • Fröbisch, J. (2008). Global taxonomic diversity of anomodonts (Tetrapoda, Therapsida) and the terrestrial rock record across the Permian-Triassic boundary. PLoS ONE, 3(11), e3733. doi:10.1371/journal.pone.0003733.

    Article  Google Scholar 

  • Fröbisch, J. (2009). Composition and similarity of global anomodont-bearing tetrapod faunas. Earth-Science Reviews, 95, 119–157.

    Article  Google Scholar 

  • Fröbisch, J., & Reisz, R. R. (2009). The Late Permian herbivore Suminia and the early evolution of arboreality in terrestrial vertebrate ecosystems. Proceedings of the Royal Society B-Biological Sciences, 276, 3611–3618.

    Article  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.

    Google Scholar 

  • Hopson, J. A. (1995). Patterns of evolution in the manus and pes of non-mammalian therapsids. Journal of Vertebrate Paleontology, 15, 615–639.

    Article  Google Scholar 

  • Kemp, T. S. (2005). The origin and evolution of mammals. Oxford: Oxford University Press.

    Google Scholar 

  • Keyser, A. W., & Smith, R. M. H. (1979). Vertebrate biozonation of the Beaufort Group with special reference to the Western Karoo Basin. Annals of the Geological Survey of South Africa, 12, 1–35.

    Google Scholar 

  • King, G. M. (1990). Life and death in the Permo-Triassic: The fortunes of the dicynodont mammal-like reptiles. Sidney Haughton Memorial Lecture, 3, 17.

    Google Scholar 

  • King, G. M. (1991). Terrestrial tetrapods and the end Permian event: A comparison of analyses. Historical Biology, 5, 239–255.

    Article  Google Scholar 

  • Kissel, R. A., & Reisz, R. R. (2004). Synapsid fauna of the Upper Pennsylvanian Rock Lake shale near Garnett, Kansas and the diversity pattern of early amniotes. In G. Arratia, M. V. H. Wilson, & R. Cloutier (Eds.), Recent advances in the origin and early radiation of vertebrates (pp. 409–428). München: Pfeil Verlag.

    Google Scholar 

  • Lloyd, G. T., Davis, K. E., Pisani, D., Tarver, J. E., Ruta, M., Sakamoto, M., et al. (2008). Dinosaurs and the Cretaceous terrestrial revolution. Proceedings of the Royal Society B: Biological Sciences, 275, 2483–2490.

    Article  Google Scholar 

  • Lucas, S. G. (2009). Timing and magnitude of tetrapod extinctions across the Permo-Triassic boundary. Journal of Asian Earth Sciences, 36, 491–502.

    Article  Google Scholar 

  • Luo, Z.-X. (2007). Transformation and diversification in early mammal evolution. Nature, 450, 1011–1019.

    Article  Google Scholar 

  • Mannion, P. D., Upchurch, P., Carrano, M. T., & Barrett, P. M. (2011). Testing the effect of the rock record on diversity: A multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time. Biological Reviews, 86, 157–181.

    Article  Google Scholar 

  • Marx, F. G. (2009). Marine mammals through time: When less is more in studying palaeodiversity. Proceedings of the Royal Society B: Biological Sciences, 276, 887–892.

    Article  Google Scholar 

  • Maxwell, D. (1992). Permian and Early Triassic extinction of non-marine tetrapods. Palaeontology, 35, 571–583.

    Google Scholar 

  • McGowan, A. J., & Smith, A. B. (2008). Are global Phanerozoic marine diversity curves truly global? A study of the relationship between regional rock records and global Phanerozoic marine diversity. Paleobiology, 34, 80–103.

    Article  Google Scholar 

  • McKinney, M. L. (1990). Classifying and analyzing evolutionary trends. In K. J. McNamara (Ed.), Evolutionary trends (pp. 28–58). Tucson: University of Arizona Press.

    Google Scholar 

  • Olson, E. C. (1944). Origin of mammals based upon the cranial morphology of the therapsid suborders. Special Papers of the Geological Society of America, 55, 1–136.

    Article  Google Scholar 

  • Olson, E. C. (1959). The evolution of mammalian characters. Evolution, 13, 344–353.

    Article  Google Scholar 

  • Olson, E. C. (1966). Community evolution and the origin of mammals. Ecology, 47, 291–302.

    Article  Google Scholar 

  • Peters, S. E. (2005). Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences of the United States of America, 102, 12326–12331.

    Article  Google Scholar 

  • Peters, S. E. (2006). Genus extinction, origination, and the durations of sedimentary hiatuses. Paleobiology, 32, 387–407.

    Article  Google Scholar 

  • Peters, S. E., & Foote, M. (2001). Biodiversity in the Phanerozoic: A reinterpretation. Paleobiology, 27, 583–601.

    Article  Google Scholar 

  • Prothero, D. R. (2006). After the dinosaurs: The age of mammals. Bloomington: Indiana University Press.

    Google Scholar 

  • Quinn, G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Raup, D. M. (1972). Taxonomic diversity during the Phanerozoic. Science, 177, 1065–1071.

    Article  Google Scholar 

  • Raup, D. M. (1976). Species diversity in the Phanerozoic: An interpretation. Paleobiology, 2, 289–297.

    Google Scholar 

  • Raup, D. M., & Sepkoski, J. J. (1984). Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences of the United States of America, 81, 801–805.

    Article  Google Scholar 

  • Roopnarine, P. D., Angielczyk, K. D., Wang, S. C., & Hertog, R. (2007). Trophic network models explain instability of Early Triassic terrestrial communities. Proceedings of the Royal Society B-Biological Sciences, 274, 2077–2086.

    Article  Google Scholar 

  • Rose, K. D. (2006). The beginning of the age of mammals. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Rubidge, B. S. (1995). Biostratigraphy of the Beaufort Group (Karoo Supergroup). South African Committee for Stratigraphy Biostratigraphic Series, 1, 1–46.

    Google Scholar 

  • Rubidge, B. S. (2005). Re-uniting lost continents—Fossil reptiles from the ancient Karoo and their wanderlust. South African Journal of Geology, 108, 135–172.

    Article  Google Scholar 

  • Sahney, S., & Benton, M. J. (2008). Recovery from the most profound mass extinction of all time. Proceedings of the Royal Society B-Biological Sciences, 275, 759–765.

    Article  Google Scholar 

  • Sahney, S., Benton, M. J., & Ferry, P. A. (2010). Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land. Biology Letters, 6, 544–547.

    Article  Google Scholar 

  • Sepkoski, J. J. (1976). Species diversity in the Phanerozoic: Species-area effects. Paleobiology, 2, 298–303.

    Google Scholar 

  • Sepkoski, J. J. (1981). A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7, 36–53.

    Google Scholar 

  • Sepkoski, J. J., Bambach, R. K., Raup, D. M., & Valentine, J. W. (1981). Phanerozoic marine diversity and the fossil record. Nature, 293, 435–437.

    Article  Google Scholar 

  • Smith, A. B. (2001). Large-scale heterogeneity of the fossil record: Implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 356, 351–367.

    Article  Google Scholar 

  • Smith, A. B., & McGowan, A. J. (2005). Cyclicity in the fossil record mirrors rock outcrop area. Biology Letters, 1, 443–445.

    Article  Google Scholar 

  • Smith, A. B., & McGowan, A. J. (2007). The shape of the Phanerozoic marine palaeodiversity curve: How much can be predicted from the sedimentary rock record of Western Europe? Palaeontology, 50, 765–774.

    Article  Google Scholar 

  • Smith, A. B., Gale, A. S., & Monks, N. E. A. (2001). Sea-level change and rock record bias in the Cretaceous: A problem for extinction and biodiversity studies. Paleobiology, 27, 241–253.

    Article  Google Scholar 

  • Smith, R. M. H., & Ward, P. D. (2001). Pattern of vertebrate extinction across an event bed at the Permian-Triassic boundary in the Karoo Basin of South Africa. Geology, 29, 1147–1150.

    Article  Google Scholar 

  • Smith, R. M. H., & Botha, J. (2005). The recovery of terrestrial vertebrate diversity in the South African Karoo Basin after the end-Permian extinction. Comptes Rendus Palevol, 4, 555–568.

    Article  Google Scholar 

  • Uhen, M. D., & Pyenson, N. D. (2007). Diversity estimates, biases, and historiographic effects: Resolving cetacean diversity in the Tertiary. Palaeontologia Electronica, 10, 11A: 22p.

    Google Scholar 

  • Upchurch, P., & Barrett, P. M. (2005). A phylogenetic perspective on sauropod diversity. In K. A. Curry-Rogers & J. A. Wilson (Eds.), The Sauropods: Evolution and paleobiology (pp. 104–124). Berkeley: University of California Press.

    Google Scholar 

  • Ward, P. D., Botha, J., Buick, R., De Kock, M. O., Erwin, D. H., Garrison, G. H., et al. (2005). Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science, 307, 709–714.

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Ken Angielczyk and Christian Kammerer for organizing the ‘Synapsid Symposium’ at the 69th Annual Meeting of the Society of Vertebrate Paleontology in Bristol, UK. Ken Angielczyk further provided the majority of the taxonomic and stratigraphic data on Karoo vertebrates. This work greatly benefited from reviews by Roger Benson, Philip Mannion, and Marcello Ruta. This study was financially supported by the Deutsche Forschungsgemeinschaft (FR 2457/3-1) and a Sofja Kovalevskaja Award of the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Fröbisch .

Editor information

Editors and Affiliations

Appendices

Appendix 18.1

List of synapsid genera per assemblage zone of the South African Karoo Basin

Eodicynodon Assemblage Zone

  • Australosyodon

  • Eodicynodon

  • Eodicynodonoelofseni

  • Glanosuchus

  • Ictidosaurus

  • Patranomodon

  • Tapinocaninus

  • indet. gorgonopsian

Tapinocephalus Assemblage Zone

  • Alopecodon

  • Anomocephalus

  • Anteosaurus

  • Avenantia

  • Brachyprosopus

  • Bullacephalus

  • Chelydontops

  • Colobodectes

  • Crapartinella

  • Criocephalosaurus

  • Delphinognathus

  • Diictodon

  • Elliotsmithia

  • Eoarctops

  • Eosimops

  • Galechirus

  • Galeops

  • Galepus

  • Glanosuchus

  • Heleosaurus

  • Hipposaurus

  • Ictidosaurus

  • Jonkeria

  • Keratocephalus

  • Lanthanostegus

  • Lycosuchus

  • Mormosaurus

  • Moschops

  • Pachydectes

  • Pardosuchus

  • Phocosaurus

  • Pristerodon

  • Pristerognathus

  • Prosictodon

  • Riebeeckosaurus

  • Robertia

  • Scylacognathus

  • Scylacosaurus

  • Simorhinella

  • Struthiocephalus

  • Struthiocephaloides

  • Styracocephalus

  • Tapinocephalus

  • Taurocephalus

  • Titanosuchus

Pristerognathus Assemblage Zone

  • Dicynodontoides

  • Diictodon

  • Emydops

  • Endothiodon

  • Eosimops

  • Glanosuchus

  • Hipposaurus

  • Hofmeyria

  • Pristerodon

  • Pristerognathus

  • Scylacognathus

Tropidostoma Assemblage Zone

  • Charassognathus

  • Cistecephalus

  • Cyonosaurus

  • Dicynodontoides

  • Diictodon

  • Emydops

  • Endothiodon

  • Gorgonops

  • Hofmeyria

  • Ictidosuchoides

  • Ictidosuchops

  • Lobalopex

  • Lophorhinus

  • Lycaenops

  • Oudenodon

  • Pristerodon

  • Procynosuchus

  • Rhachiocephalus

  • Scylacognathus

  • Tropidostoma

Cistecephalus Assemblage Zone

  • Aelurognathus

  • Aelurosaurus

  • Aloposaurus

  • Arctognathus

  • Aulacephalodon

  • Basilodon

  • Choerosaurus

  • Cistecephalus

  • Clelandina

  • Compsodon

  • Cyonosaurus

  • Dicynodon

  • Dicynodontoides

  • Diictodon

  • Dinanomodon

  • Emydops

  • Endothiodon

  • Euchambersia

  • Euptychognathus

  • Gorgonops

  • Herpetoskylax

  • Ictidostoma

  • Ictidosuchoides

  • Ictidosuchops

  • Kitchinganomodon

  • Lycaenodon

  • Lycaenops

  • Mirotenthes

  • Myosauroides

  • Notaelurodon

  • Odontocyclops

  • Oudenodon

  • Paraburnetia

  • Pristerodon

  • Procynosuchus

  • Rhachiocephalus

  • Rubidgea

  • Scylacognathus

  • Sintocephalus

Dicynodon Assemblage Zone

  • Aelurognathus

  • Aelurosaurus

  • Akidnognathus

  • Aloposaurus

  • Arctognathus

  • Aulacephalodon

  • Basilodon

  • Burnetia

  • Cerdosuchoides

  • Cistecephaloides

  • Clelandina

  • Cynosaurus

  • Cyonosaurus

  • Daptocephalus

  • Dicynodon

  • Dicynodontoides

  • Diictodon

  • Dinanomodon

  • Emydops

  • Ictidochampsa

  • Ictidorhinus

  • Ictidosuchoides

  • Ictidosuchops

  • Keyseria

  • Kwazulusaurus

  • Lemurosaurus

  • Lycaenops

  • Lycideops

  • Lystrosaurus

  • Myosauroides

  • Nanictidops

  • Nanictosaurus

  • Notaelurodon

  • Oudenodon

  • Pelanomodon

  • Polycynodon

  • Pristerodon

  • Procynosuchus

  • Propelanomodon

  • Rubidgea

  • Scaloporhinus

  • Scylacognathus

  • Sycosaurus

  • Theriognathus

  • Tigrisuchus

Lystrosaurus Assemblage Zone

  • Ericiolacerta

  • Galesaurus

  • Ictidosuchoides

  • Lystrosaurus

  • Myosaurus

  • Notaelurodon

  • Olivierosuchus

  • Platycraniellus

  • Progalesaurus

  • Regisaurus

  • Scaloposaurus

  • Thrinaxodon

  • Tigrisuchus

Cynognathus Assemblage Zone

  • Angonisaurus

  • Bauria

  • Bolotridon

  • Cistecynodon

  • Cricodon

  • Cynognathus

  • Diademodon

  • Kannemeyeria

  • Kombuisia

  • Langbergia

  • Lumkuia

  • Mircrogomphodon

  • Shansiodon

  • Trirachodon

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fröbisch, J. (2014). Synapsid Diversity and the Rock Record in the Permian-Triassic Beaufort Group (Karoo Supergroup), South Africa. In: Kammerer, C., Angielczyk, K., Fröbisch, J. (eds) Early Evolutionary History of the Synapsida. Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6841-3_18

Download citation

Publish with us

Policies and ethics