Skip to main content

Water Quality Monitoring by Aquatic Bryophytes

  • Chapter
  • First Online:

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 3))

Abstract

Bryophytes are non-vascular plants that are in a close relationship with their immediate environment. They often have large biomass in freshwater ecosystem and high level of production. Moreover, their tissues contain elevated amount of C, N and P, and cell walls have high cation exchange capacity. Aquatic bryophytes can be used to assess freshwater pollution as indicators – presence or absence of species – or as monitors for accumulating elements. Consumption of metals and other substances by aquatic bryophytes is an important exposure pathway for consumers. The use of bryophytes for water quality assessment is well documented, but different techniques and approaches prevent standardization and their applicability on the European scale. Thus we review major findings in ‘bryomonitoring’. Data were reviewed from a range of countries, mainly in Europe, illustrating the advantages of low cost methods for monitoring water quality.

Here we introduce the term ‘bryomonitoring’ as a method to assess alterations of the environment. Biomonitoring can be split into passive – observation and analysis of native bryophytes, and active biomonitoring – based on species transplantation for a fixed exposure period. Two widespread northern hemisphere aquatic mosses, Fontinalis antipyretica and Platyhypnidium riparioides, are the most commonly used biomonitors for river quality assessment. For passive biomonitoring key issues are background and reference level determination, and proper selection of sampling sites. For active monitoring, upper segments of a same age from a reference region should be applied. The actual analytical techniques give in general similar results, but not completely interchangeable.

Aquatic bryophytes are used to assess the ecological status. They are a stress-tolerant and various species have a wide trophic range. Fontinalis antipyretica and Platyhypnidium ripariodes have all criteria for biota monitoring in rivers for heavy metals.

Standardization of sampling procedures and analytical techniques in aquatic bryomonitoring is further needed. The number of samples should be fixed based on sampling area surface. Period of exposure time for active biomonitoring should be specified in general. Background levels and ambient metal concentrations have to be observed in parallel.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AAS:

Atomic Absorption Spectrophotometry

BAF:

Biota Accumulation Factor

BCF:

Bioconcentration Factor

BMF:

Biomagnification Factor

BQE:

Biological Quality Element

C:

Element concentration

Cbckg :

Background concentration

CF:

Contamination Factor

Co :

Element concentration in an organism

Cw/s :

Element concentration in water/sediment

DEHP:

Di(2-ethylhexyl)-phthalate

DL:

Detection Limit

EA:

Environmental Alteration

EQR:

Ecological Quality Ratio

EQS:

Ecological Quality Standard

EU:

European Union

FAAS:

Furnace Atomic Absorption Spectrophotometry

GEA:

Global Environmental Alteration

GFAAS:

Graphite Furnace Atomic Absorption Spectrophotometry

HCH:

Hexachlorocyclohexanes

HPLC:

High Pressure Liquid Chromatography

IBMR:

Macrophyte Biological Index for Rivers

ICP-AES (ICP-OES):

Inductively Coupled Plasma Atomic Emission Spectroscopy (Inductively Coupled Plasma Optical Emission Spectrometry)

ICP-MS:

Inductively Coupled Plasma Mass Spectrometry

MAC:

Macrophyte Assessment and Classification

MACPACS:

MACrophyte Prediction And Classification System

MLD:

Methodological Limit of Determination

MTR:

Mean Trophic Rank

NAA:

Neutron Activation Analysis

PAH:

Polyaromatic Hydrocarbons

PCB:

Polychlorinated Biphenyls

pH:

Acidity

RHS:

River Habitat Survey

RSD%:

Relative Standard Deviation in percents

TIM:

Trophic Index of Macrophytes

WFD:

Water Framework Directive

References

  • Aguiar FC, Feio MJ, Ferreira MT (2011) Choosing the best method for stream bioassessment using macrophyte communities: indices and predictive models. Ecol Indic 11:379–388

    Google Scholar 

  • Augusto S, Gonzalez C, Vieira R, Máguas C, Branquinho C (2011) Evaluating sources of PAHs in urban streams based on land use and biomonitors. Environ Sci Technol 45:3731–3738

    CAS  Google Scholar 

  • Bates JW (2008) Mineral nutrition and substratum ecology. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 315–372

    Google Scholar 

  • Benson-Evans K, Williams PF (1976) Transplanting aquatic bryophytes to assess river pollution. J Bryol 9:81–91

    Google Scholar 

  • Besse J-P, Geffard O, Coquery M (2012) Relevance and applicability of active biomonitoring in continental waters under the water framework directive. Trends Anal Chem 36:113–127

    CAS  Google Scholar 

  • Birk S, Willby N (2010) Towards harmonization of ecological quality classification: establishing common grounds in European macrophyte assessment for rivers. Hydrobiologia 652:149–163

    Google Scholar 

  • Birk S, Korte T, Hering D (2006) Intercalibration of assessment methods for macrophytes in lowland streams: direct comparison and analysis of common metrics. Hydrobiologia 566:417–430

    Google Scholar 

  • Bruns I, Siebert A, Baumbach R, Miersch J, Günther D, Markert B, Krauβ G-J (1995) Analysis of heavy metals and sulphur-rich compounds in the water moss Fontinalis antipyretica L. ex Hedw. Fresen J Anal Chem 353:101–104

    CAS  Google Scholar 

  • Bruns I, Friese K, Markert B, Krauss G-J (1997) The use of Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals. 2. Heavy metal accumulation and physiological reaction of Fontinalis antipyretica L. ex Hedw. in active biomonitoring in the River Elbe. Sci Total Environ 204:161–176

    CAS  Google Scholar 

  • Burton MAS (1986) Biological monitoring. MARC report no. 32. Monitoring and Assessment Research Centre, King’s College. University of London, London

    Google Scholar 

  • Burton MAS (1990) Terrestrial and aquatic bryophytes as monitors of environmental contaminants in urban and industrial habitats. Bot J Lin Soc 104:267–286

    Google Scholar 

  • Burton MAS, Peterson PJ (1979) Metal accumulation by aquatic bryophytes from polluted mine streams. Environ Pollut 19:39–46

    CAS  Google Scholar 

  • Caines LA, Watt AW, Wells DE (1985) The uptake and release of some trace metals by aquatic bryophytes in acidified waters in Scotland. Environ Pollut 10:1–18

    CAS  Google Scholar 

  • Cairns J Jr, van der Schalie WH (1980) Biological monitoring. Part I: early warning systems. Water Res 14:1179–1196

    Google Scholar 

  • Carballeira A, López J (1997) Physiological and statistical methods to identify background levels of metals in aquatic bryophytes: dependence on lithology. J Environ Qual 26:980–988

    CAS  Google Scholar 

  • Carballeira A, Vázquez MD, López J (2001) Biomonitoring of sporadic acidification of rivers on the basis of release of preloaded cadmium from the aquatic bryophyte Fontinalis antipyretica Hedw. Environ Pollut 111:95–106

    CAS  Google Scholar 

  • Cenci RM (2000) The use of aquatic moss (Fontinalis antipyretica) as monitor of contamination in standing and running waters: limits and advantages. J Limnol 60(Suppl 1):53–61

    Google Scholar 

  • Cesa M, Bizzotto A, Ferraro C, Fumagalli F, Nimis PL (2006) Assessment of intermittent trace element pollution by moss bags. Environ Pollut 144:886–892

    CAS  Google Scholar 

  • Cesa M, Campisi B, Bizzotto A, Ferraro C, Fumagalli F, Nimis PL (2008) A factor influence study of trace element bioaccumulation in moss bags. Arch Environ Contam Toxicol 55(3):386–396

    CAS  Google Scholar 

  • Cesa M, Azzalini G, De Toffol V, Fontanive M, Fumagalli F, Nimis PL, Riva G (2009a) Moss bags as indicators of trace metal contamination in pre-alpine streams. Plant Biosyst 143(1):173–180

    Google Scholar 

  • Cesa M, Bizzotto A, Ferraro C, Fumagalli F, Nimis PL (2009b) S.T.R.E.A.M., system for trace element assessment with mosses. An equation to estimate mercury concentration in freshwaters. Chemosphere 75:858–865

    CAS  Google Scholar 

  • Cesa M, Bizzotto A, Ferraro C, Fumagalli F, Nimis PL (2010) Palladio, an index of trace element alteration for the river bacchiglione based on Rhynchostegium riparioides moss bags. Water Air Soil Pollut 208:59–77

    CAS  Google Scholar 

  • Claveri B, Guérold F, Pihan JC (1995) Use of transplanted mosses and autochthonous liverworts to monitor trace metals in acidic and non-acidic headwater streams (Vosges Mountains, France). Sci Total Environ 175:235–244

    CAS  Google Scholar 

  • Cruz de Carvalho R, Branquinho C, Marques da Silva J (2011) Physiological consequences of desiccation in the aquatic bryophyte Fontinalis antipyretica. Planta 234(1):195–205

    CAS  Google Scholar 

  • Dazy M, Béraud E, Cotelle S, Meux E, Masfaraud J-F, Férard J-F (2008) Antioxidantenzyme activities as affected by trivalent and hexavalent chromium species in Fontinalis antipyretica Hedw. Chemosphere 73(3):281–290

    CAS  Google Scholar 

  • Delépée R, Pouliquen H, Le Bris H (2004) The bryophyte Fontinalis antipyretica Hedw. bioaccumulates oxytetracycline, flumequine and oxolinic acid in the freshwater environment. Sci Total Environ 322(1–3):243–253

    Google Scholar 

  • Demars BOL, Britton A (2011) Assessing the impacts of small scale hydroelectric schemes on rare bryophytes and lichens. Scottish natural heritage and Macaulay land use institute funded report. Scottish Natural Heritage Commissioned Report no. 421

    Google Scholar 

  • Dietz J (1972) Die Anreicherung von Schwermetallen in submersen Pflanzen. Geawasser/Abwasser 113:269–273

    CAS  Google Scholar 

  • Diviš P, Machát J, Szkandera R, Dočekalová H (2012) In situ measurement of bioavailable metal concentrations at the downstream on the Morava River using transplanted aquatic mosses and DGT technique. Int J Environ Res 6(1):87–94

    Google Scholar 

  • Downes BJ, Entwisle TJ, Reich P (2003) Effects on flow regulation on disturbance frequencies and in-channel bryophytes and macroalgae in some upland streams. River Res Appl 19:27–42

    Google Scholar 

  • Duncan MJ, Suren AM, Brown SLR (1999) Assessment of streambed stability in steep, bouldery streams: development of a new analytical technique. J N Am Benthol Soc 18(4):445–456

    Google Scholar 

  • During HJ (1992) Ecological classification of bryophytes and lichens. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing environment. Clarendon, Oxford

    Google Scholar 

  • Empain A (1976) Les bryophytes aquatiques utilisés comme traceurs de la contamination en métaux lourds des eaux douces. In: Symposium Mémoires de la Société Royale de Botanique de Belgique, 20 mars 1976, Bruxelles, 7, pp 141–156

    Google Scholar 

  • Empain AM (1977) Ecologie des populations bryophytes aquatiques de la Meuse de la Sambre et de la Somme. Doctoral dissertation, University of Liege, Belgium

    Google Scholar 

  • Empain AM (1988) A posteriori detection of heavy metal pollution of aquatic habitats. In: Glime JM (ed) Methods in bryology. Proceedings of bryol. method. Workshop, Mainz, Hattori Bot Lab, Nichinan, pp 213–220

    Google Scholar 

  • Empain A, Lambinon J, Mouvet C, Kirchmann R (1980) Utilisation des bryophytes aquatiques et subaquatiques comme indicateurs biologiques de la qualité des eaux courantes. In: Pesson P (ed) La Pollution des Eaux Continentales, 2nd edn. Gauthier-Villars, Paris, pp 195–223

    Google Scholar 

  • Englund G, Jonsson B-G, Malmqvist B (1997) Effects of flow regulation on bryophytes in North Swedish rivers. Biol Conserv 79:79–86

    Google Scholar 

  • European Commission (2010) Guidance on chemical monitoring of sediment and biota under the water framework directive. Guidance document no 25. Technical report 2010.3991. Common implementation strategy for the water framework directive. European Commission, Brussels

    Google Scholar 

  • European Union (2000) Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur Commun L 327:1–72

    Google Scholar 

  • European Union (2008) Directive 2008/105/EC of the European Parliament and of the council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Off J Eur Commun L 348:84–97

    Google Scholar 

  • Feio MJ, Aguiar FC, Almeida SFP, Ferreira MT (2012) AQUAFLORA: a predictive model based on diatoms and macrophytes for streams water quality assessment. Ecol Indic 18:586–598

    CAS  Google Scholar 

  • Ferreira D, Ciffroy P, Tusseau-Vuillemin M-H, Garnier C, Garnier J-M (2009) Modelling exchange kinetics of copper at the water-aquatic moss (Fontinalis antipyretica) interface: influence of water cationic composition (Ca, Mg, Na and pH). Chemosphere 74:1117–1124

    CAS  Google Scholar 

  • Figueira R, Ribeiro T (2005) Transplants of aquatic mosses as biomonitors of metals released by a mine effluent. Environ Pollut 136:293–301

    CAS  Google Scholar 

  • Frisque G, Galoux M, Bernes A (1983) Accumulation de deux micropolluants (les plychlorobiphényles et le gammaHCH) par des bryophytes aquatiques de la Meuse. Meded Fac Landbouwwet Rijksuniv Gent 48:971–983

    CAS  Google Scholar 

  • García-Álvaro MA, Martínez-Abaigar J, Núñez-Olivera E, Beaucourt N (2000) Element concentrations and enrichment ratios in the aquatic moss Rhynchostegium riparioides along the River Iregua (La Riojia, Northern Spain). Bryologist 103(3):518–533

    Google Scholar 

  • Gecheva G, Yurukova L, Cheshmedjiev S, Ganeva A (2010) Distribution and bioindication role of aquatic bryophytes in Bulgarian rivers. Biotechnol Biotechnol Equip 24/2010/SE, 24(2): 164–170

    Google Scholar 

  • Gecheva G, Yurukova L, Ganeva A (2011) Assessment of pollution with aquatic bryophytes in Maritsa River (Bulgaria). Bull Environ Contam Toxicol 87(4):480–485

    CAS  Google Scholar 

  • Gimeno C, Puche F (1999) Chlorophyll content and morphological changes in cellular structure of Rhynchostegium riparioides (Hedw.) Card. (Brachytheciaceae, Musci) and Fontinalis hypnoides Hartm. (Fontinalaceae, Musci) in response to water pollution and transplant containers on Palancia river (East Spain). Nova Hedwigia 68:197–216

    Google Scholar 

  • Glime JM (2003) Fontinalis. Available via http://www.bio.umass.edu/biology/conn.river/fontinal.html. Accessed 5 July 2012

  • Glime JM (2007) Bryophyte ecology. Vol 1. Physiological ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Available via http://www.bryoecol.mtu.edu. Accessed 13 July 2012

  • Glime JM, Vitt DH (1987) A comparison of bryophyte species diversity and structure of montane streams and stream banks. Can J Bot 65:1824–1837

    Google Scholar 

  • Gonçalves EPR, Boaventura RAR, Mouvet C (1992) Sediments and aquatic mosses as pollution indicators for heavy metals in the Ave river basin (Portugal). Sci Total Environ 114:7–24

    Google Scholar 

  • Grolle R, Long DG (2000) An annotated check-list of the Hepaticae and Anthocerotae of Europe and Macaronesia. J Bryol 22:103–140

    Google Scholar 

  • Gurnell AM, O’Hare JM, O’Hare MT, Dunbar MJ, Scarlett PM (2009) An exploration of associations between assemblages of aquatic plant morphotypes and channel geomorphological properties within British rivers. Geomorphology 116(1–2):135–144

    Google Scholar 

  • Haseloff HP (1982) Bioindikatoren und bioindikation. Biol Unserer Zeit 12:20–26

    Google Scholar 

  • Haslam SM (1982) A proposed method for monitoring river pollution using macrophytes. Environ Technol Lett 3:19–34

    Google Scholar 

  • Hertz J (1991) Bioindicators for monitoring heavy metals in the environment. In: Merian E (ed) Metals and their compounds in the environment. VCH Verlagsgesellschaft mbH, Weinheim, New York, Basel, Cambridge, pp 221–231

    Google Scholar 

  • Hill MO, Bell N, Bruggeman-Nannenga MA, Brugués M, Cano MJ, Enroth J, Flatberg KI, Frahm J-P, Gallego MT, Garilleti R, Guerra J, Hedenäs L, Holyoak DT, Hyvönen J, Ignatov MS, Lara F, Mazimpaka V, Muñoz J, Söderström L (2006) An annotated checklist of the mosses of Europe and Macaronesia. J Bryol 28(3):198–267

    Google Scholar 

  • Hime S, Bateman IJ, Posen P, Hutchins M (2009) A transferable water quality ladder for conveying use and ecological information within public surveys. CSERGE working paper EDM 09–01, University of East Anglia

    Google Scholar 

  • Hofmann A, Winkler S (1990) Effects of atrazine in environmentally relevant concentrations on submerged macrophytes. Arch Hydrobiol 118:69–80

    CAS  Google Scholar 

  • Hongve D, Brittain JE, Bjørnstad HE (2002) Aquatic mosses as a monitoring tool for 137Cs contamination in streams and rivers – a field study from central southern Norway. J Environ Radioact 60:139–147

    CAS  Google Scholar 

  • Hunt GJ (1983) Radioactivity in surface and coastal waters of the British Isles, 1981. Aquatic environment monitoring report no. 9. Ministry of Agriculture, Fisheries and Food Lowestoft, Suffolk

    Google Scholar 

  • Jackson PP, Bobinson NJ, Whitton BA (1991) Low molecular weight metal complexes in the freshwater moss Rhinchostegium riparoides exposed to elevated concentrations of Zn, Cu, Cd, and Pb in the laboratory and field. Environ Exp Bot 31(3):359–366

    CAS  Google Scholar 

  • Janauer G, Dokulil M (2006) Macrophytes and algae in running waters. In: Ziglio G, Siligardi M, Flaim G (eds) Biological monitoring of rivers. Wiley, Chichester, pp 89–109

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Google Scholar 

  • Kelly MG, Whitton BA (1989) Interspecific differences in Zn, Cd and Pb accumulation by freshwater algae and bryophytes. Hydrobiologia 175:1–11

    CAS  Google Scholar 

  • Kelly MG, Girton C, Whitton BA (1987) Use of moss-bags for monitoring heavy metals in rivers. Water Res 21(11):1429–1435

    CAS  Google Scholar 

  • Kirchmann R, Lambinon J (1973) Plants as bioindicators of the contamination of a river by the effluents of a PWR nuclear power station. Assessment of the radioactive releases of the Sena reactor through aquatic and ripicolous plants of the river Meuse. Bull Soc Roy Bot Belg 106:187–201

    CAS  Google Scholar 

  • Kovács M (1992) Biological indicators of water pollution. In: Kovács M (ed) Biological indicators in environmental protection. Akadémiai Kiadó, Budapest, pp 120–130

    Google Scholar 

  • Kovács M, Podani J (1986) Bioindication: a short review on the use of plants as indicators of heavy metals. Acta Biol Hung 37:19–29

    Google Scholar 

  • Lang P, Murphy KJ (2012) Environmental drivers, life strategies and bioindicator capacity of bryophyte communities in high-latitude headwater streams. Hydrobiologia 679:1–17

    CAS  Google Scholar 

  • Lee J, Johnson-Green P, Lee EJ (2002) Chemical analysis of transplanted aquatic mosses and aquatic environment during a fish kill on the Chungnang River, Seoul, Korea. Korean J Biol Sci 6:215–219

    CAS  Google Scholar 

  • Lingsten L (1991) Levels of heavy metals in aquatic mosses in acidified water bodies. Verh Int Ver Limnol 24:2228–2230

    CAS  Google Scholar 

  • López J, Carballeira A (1989) A comparative study of pigment contents and response to stress in five aquatic bryophytes. Lindbergia 15:188–194

    Google Scholar 

  • López J, Carballeira A (1993) Interspecific differences in metal bioaccumulation and plant-water concentration ratios in five aquatic bryophytes. Hydrobiologia 263:95–107

    Google Scholar 

  • López J, Vazquez MD, Carballeira A (1994) Stress responses and metal exchange kinetics following transplant of the aquatic moss Fontinalis antipyretica. Freshwater Biol 32:185–198

    Google Scholar 

  • M A F F (Ministry of Agriculture, Fisheries and Food) (1967) Radioactivity of surface and coastal waters of the British Isles. Report FRL I. Ministry of Agriculture, Fisheries and Food, Lowestoft, Suffolk

    Google Scholar 

  • Manning WJ, Feder WA (1980) Biomonitoring air pollutants with plants. Applied Science Publishers, London, p 142

    Google Scholar 

  • Markert B (1991) Inorganic chemical investigation in the forest biosphere reserve near Kalinin, USSR. I. Mosses and peat profiles as bioindicators for different chemical elements. Vegetatio 95:127–135

    Google Scholar 

  • Markert B (1996) Instrumental element and multi-element analyses of plant samples. Wiley, Chichester, 296

    Google Scholar 

  • Markert B (2008) From biomonitoring to integrated observation of the environment – the multi-markered bioindication concept. Ecol Chem Eng S 15(3):315–333

    CAS  Google Scholar 

  • Markert BA, Breure AM, Zechmeister HG (2003) Definitions strategies and principles for bioindication/biomonitoring of the environment. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors, Elsevier Science Ltd, Oxford, pp 3–39

    Google Scholar 

  • Martin MH, Coughtrey PJ (1982) Biological monitoring of heavy metal pollution. Applied Science Publishers, London/New York, p 475

    Google Scholar 

  • Martinez-Abaigar J, Núñez-Olivera E (1998) Ecophysiology of photosynthetic pigments in aquatic bryophytes. In: Bates JW, Ashton NW, Duckett JG (eds) Bryology for the twenty-first century. British Bryological Society, Leeds, pp 277–292

    Google Scholar 

  • McLean RO, Jones K (1975) Studies of tolerance to heavy metals in the flora of the rivers Ystwyth and Clarach, Wales. Freshwater Biol 5:431–444

    Google Scholar 

  • Mersch J, Claveri B (1998) Les bryophytes aquatiques comme outil de surveillance de la contamination des eaux courantes par les micropolluants métalliques: modalités d’interprétation des données. Etude Inter-Agences 55, France

    Google Scholar 

  • Mersch J, Johansson L (1993) Transplanted aquatic mosses and freshwater mussels to investigate the trace metal contamination in the rivers Meurthe and Plaine, France. Environ Technol 14:1027–1036

    CAS  Google Scholar 

  • Mersch J, Pihan JC (1993) Simultaneous assessment of environmental impact on condition and trace metals availability in zebra mussels Dreissena polymorpha transplanted into the Wilz River, Luxembourg. Comparison with the aquatic moss Fontinalis antipyretica. Arch Environ Contam Toxicol 25:353–364

    CAS  Google Scholar 

  • Mersch J, Reichard M (1998) In situ investigation of trace metal availability in industrial effluents using transplanted aquatic mosses. Arch Environ Contam Toxicol 34:336–341

    CAS  Google Scholar 

  • Mishev P, Damyanova A, Yurukova L. (1996) Mosses as biomonitors of airborne pollution in the northern part of Rila Mountain. Part II. Radioactivity of mosses. In: Carbonnel JP, Stamenov JN (eds) Observatoire de montagne de Moussala – OM2, 4. Sofia, pp 137–141

    Google Scholar 

  • Mouvet C (1984) Accumulation of chromium and copper by the aquatic moss Fontinalis antipyretica L. ex Hedw. transplanted in a metal-contaminated river. Environ Technol Lett 5:541–548

    CAS  Google Scholar 

  • Mouvet C (1986) Métaux lourds et Mousses aquatiques, synthèse méthodologique. Université de Metz – Laboratoire d’Ecologie, rapport de contrat à l’Agence de l’Eau Rhin-Meuse et l’Agence de l’Eau Rhône-Méditerranée-Corse, France

    Google Scholar 

  • Mouvet C, Galoux M, Bernes A (1985) Monitoring of polychlorinated biphenyls (PCBs) and hexachlorocyclohexanes (HCH) in freshwater using aquatic moss Cinclidotus danubicus. Sci Total Environ 44:253–267

    CAS  Google Scholar 

  • Mouvet C, Pattée E, Cordebar P (1986) Utilisation des mousses aquatiques pour I’identification et la localisatiom précise de sources de pollution métallique multiforme. Acta Oecol 7(1):77–91

    CAS  Google Scholar 

  • O’Hare MT, Baattrup-Pedersen A, Nijboer R, Szoszkiewicz K, Ferreira T (2006) Macrophyte communities of European streams with altered physical habitat. Hydrobiologia 566:197–210

    Google Scholar 

  • O’Hare JM, O’Hare MT, Gurnell AM, Dunbar MJ, Scarlett PM, Laize C (2011) Physical constraints on the distribution of macrophytes linked with flow and sediment dynamics in British rivers. River Res Appl 27:671–683

    Google Scholar 

  • Paavola R, Muotka T, Virtanen R, Heino J, Kreivi P (2003) Are biological classifications of headwater streams concordant across multiple taxonomic groups? Freshwater Biol 48:1912–1923

    Google Scholar 

  • Papp B, Rajczy M (1995) Changes of bryophyte vegetation and habitat conditions along a section of the river Danube in Hungary. Cryptog Helv 18:95–105

    Google Scholar 

  • Papp B, Rajczy M (1998a) The role of bryophytes as bioindicators of water quality in the Danube. Verh Int Ver Theor Limnol 26:1254–1256

    CAS  Google Scholar 

  • Papp B, Rajczy M (1998b) Investigations on the condition of bryophyte vegetation of mountain streams in Hungary. J Hattori Bot Lab 84:81–90

    Google Scholar 

  • Papp B, Tsakiri E, Babalonas D (1998) Bryophytes and their environmental conditions at Enipeas (Mt Olympos) and Lycorrema (Mt Ossa) streams (Greece). In: Tsekos I, Moustakas M (eds) Progress in botanical research: proceedings of 1st Balkan Botanical Congress, Dordrecht, Boston, pp 129–132

    Google Scholar 

  • Peñuelas J (1984) Pigments of aquatic mosses of the River Muga, NE Spain, and their response to water pollution. Lindbergia 10:127–132

    Google Scholar 

  • Pirc S (2003) Aquatic mosses as sampling medium in geochemistry. RMZ-Mater Geoenviron 50(4):735–763

    CAS  Google Scholar 

  • Rasmussen G, Andersen S (1999) Episodic release of arsenic, copper and chromium from awood preservation site monitored by transplanted aquatic moss. Water Air Soil Pollut 109:41–52

    CAS  Google Scholar 

  • Raven PJ, Holmes NTH, Dawson FH, Fox PJA, Everard M, Fozzard I, Rouen KJ (1998) River habitat quality: the physical character of rivers and streams in the UK and the Isle of Man. Environment Agency, Bristol

    Google Scholar 

  • Roy S, Sen CK, Hanninen O (1996) Monitoring of polycyclic aromatic hydrocarbons using moss bags: bioaccumulation and responses of antioxidant enzymes in Fontinalis antipyretica Hedw. Chemosphere 32:2305–2315

    CAS  Google Scholar 

  • Samecka-Cymerman A (1991) Contents of arsenic, vanadium, germanium and other elements in aquatic liverwort Scapania undulata (L.) Dum. growing in the Sudety mountains. Pol Arch Hydrobiol 38(1):79–84

    CAS  Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (1992) Anomalous elemental composition of aquatic bryophytes near barite zones in the Sowie Mts. (Poland). J Geochem Explor 43:213–221

    CAS  Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (1993) Scapania undulata (L.) Dum. and other aquatic bryophytes as indicators of mineralization in Poland. J Geochem Explor 46:325–334

    CAS  Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (1994) Macro- and microelements in bryophytes from serpentinite and greenstone streams. Pol Arch Hydrobiol 41:431–449

    CAS  Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (1999) Background concentrations of heavy metals in aquatic bryophytes used for biomonitoring in basaltic areas (a case study from central France). Environ Geol 39(2):117–122

    CAS  Google Scholar 

  • Samecka-Cymerman A, Kolon K, Kempers AJ (2002) Heavy metals in aquatic bryophytes from the Ore Mountains (Germany). Ecotoxicol Environ Saf 52:203–210

    CAS  Google Scholar 

  • Samecka-Cymerman A, Kolon K, Kempers AJ (2005) A comparison of native and transplanted Fontinalis antipyretica Hedw. as biomonitor of water polluted with heavy metals. Sci Total Environ 341:97–107

    CAS  Google Scholar 

  • Samecka-Cymerman A, Stankiewicz A, Kolon K, Kempers AJ (2007) Self-organizing feature map (neural networks) as a tool in classification of the relations between chemical composition of aquatic bryophytes and types of streambeds in the Tatra national park in Poland. Chemosphere 67:954–960

    CAS  Google Scholar 

  • Samecka-Cymerman A, Wojtun B, Kolon K, Kempers AJ (2011) Sanionia uncinata (Hedw.) Loeske as bioindicator of metal pollution in polar regions. Polar Biol 34:381–388

    Google Scholar 

  • Samson G, Tessier L, Vaillancourt G, Pazdernik L (1998) The use of a first order kinetic model for assessing the cadmium bioaccumulation process by two aquatic mosses. Available via http://www.wmsym.org/archives/1998/html/sess18/18-20/18-20.htm. Assessed 25 June 2012

  • Satake K, Takamatsu T, Soma M, Shibata K, Nishikawa M, Say PJ, Whitton BA (1989) Lead accumulation and location in the shoots of the aquatic liverwort Scapania undulata (L.) Dum. in stream water at Greenside Mine, England. Aquat Bot 33:111–122

    CAS  Google Scholar 

  • Say PJ, Whitton BA (1983) Accumulation of heavy metals by aquatic mosses. I. Fontinalis antipyretica. Hydrobiologia 100:245–260

    CAS  Google Scholar 

  • Say PJ, Harding JPC, Whitton BA (1981) Aquatic mosses as monitors of heavy metal contamination in the river Etherow, Great Britain. Environ Pollut 2:295–307

    CAS  Google Scholar 

  • Scarlett P, O’Hare M (2006) Community structure of in-stream bryophytes in English and Welsh rivers. Hydrobiologia 553:143–152

    Google Scholar 

  • Schaumburg J, Schranz C, Foerster J, Gutowski A, Hofmann G, Meilinger P, Schneider S, Schmedtje U (2004) Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the water framework directive. Limnologica 34:283–301

    Google Scholar 

  • Siebert A, Bruns I, Krauss G-J, Miersch J, Markert B (1996) The use of the aquatic moss Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals. 1. Fundamental investigations into heavy metal accumulation in Fontinalis antipyretica L. ex Hedw. Sci Total Environ 177:137–144

    CAS  Google Scholar 

  • Slack NG, Glime J (1985) Niche relationship of mountain stream bryophytes. Bryologist 88:1–18

    Google Scholar 

  • Spitale D (2009) Spatial distribution of bryophytes along a moisture gradient: an approach using photosynthetic pigments as indicators of stress. Ecol Res 24:1279–1286

    CAS  Google Scholar 

  • Steinnes E, Rühling Å, Lippo H, Mäkinen A (1997) Reference materials for large-scale metal deposition surveys. Accred Qual Assur 2:243–249

    CAS  Google Scholar 

  • Steubing L (1976) Niedere und höhere pflanzen als indikatoren für immissionsbelastungen. Daten Dok Umweltschutz 19:13–27

    CAS  Google Scholar 

  • Stöcker G (1980) Methodishe und theoretishe Grundlangen der Bioindikation (Bioindikation 1). In: Schubert R, Schuh J (eds) Martin Luther Universität, Halle, pp 10–21

    Google Scholar 

  • Stream Bryophyte Group (1999) Roles of bryophytes in stream ecosystems. J N Am Benthol Soc 18(2):151–184

    Google Scholar 

  • Suren A (1993) Bryophytes and associated invertebrates in first-order alpine streams of Arthur’s Pass, New Zealand. N Z J Mar Freshwater Res 27:479–494

    Google Scholar 

  • Suren AM (1996) Bryophyte distribution patterns in relation to macro-, meso-, and micro-scale variables in South Island, New Zealand streams. N Z J Mar Freshwater 30:501–523

    Google Scholar 

  • Suren AM, Duncan MJ (1999) Rolling stones and mosses: effect of substrate stability on bryophyte communities in streams. J N Am Benthol Soc 18(4):457–467

    Google Scholar 

  • Suren AM, Smart GM, Smith RA, Brown SLR (2000) Drag coefficients of stream bryophytes: experimental determinations and ecological significance. Freshwater Biol 45:309–317

    Google Scholar 

  • Szoszkiewicz K, Ferreira T, Korte T, Baattrup-Pedersen A, Davy-Bowker J, O’Hare M (2006) European river plant communities: the importance of organic pollution and the usefulness of existing macrophyte metrics. Hydrobiologia 566:211–234

    CAS  Google Scholar 

  • Tyler G (1972) Heavy metals pollute nature may reduce productivity. Ambio 1:57–59

    Google Scholar 

  • Tyler G (1990) Bryophytes and heavy metals: a literature review. Bot J Linn Soc 104:231–253

    Google Scholar 

  • Vanderpoorten A, Goffinet B (2009) Introduction to bryophytes. Cambridge University Press, Cambridge

    Google Scholar 

  • Vanderpoorten A, Palm R (1998) Canonical variables of aquatic bryophyte combinations for predicting water trophic level. Hydrobiologia 386:85–93

    CAS  Google Scholar 

  • Vanderpoorten A, Klein J-P, Stieperaere H, Tremolieres M (1999) Variations of aquatic bryophyte assemblages in the Rhine Rift related to water quality. 1. The Alsatian Rhine floodplain. J Bryol 21:17–23

    Google Scholar 

  • Vázquez MD, López L, Carballeira A (1999) Uptake of heavy metals to the extracellular and intracellular compartments in three species of aquatic bryophyte. Ecotoxicol Environ Saf 44:12–24

    Google Scholar 

  • Vázquez MD, Fernández JA, López L, Carballeira A (2000) Effects of water acidity and metal concentration on accumulation and within-plant distribution of metals in the aquatic bryophyte Fontinalis antipyretica. Water Air Soil Pollut 120:1–19

    Google Scholar 

  • Vázquez MD, Wappelhorst O, Markert B (2004) Determination of 28 elements in aquatic moss Fontinalis antipyretica Hedw. and water from the upper reaches of the river Nysa (CZ, D), by ICP-MS, ICP-OES and AAS. Water Air Soil Pollut 152:153–172

    Google Scholar 

  • Vázquez MD, Fernández JÁ, Real C, Villares R, Aboal JR, Carballeira A (2007) Design of an aquatic biomonitoring network for an environmental specimen bank. Sci Total Environ 388(1–3):357–371

    Google Scholar 

  • Vieira AR, Gonzalez C, Martins-Louǫão MA, Branquinho C (2009) Intracellular and extracellular ammonium (NH4 +) uptake and its toxic effects on the aquatic biomonitor Fontinalis antipyretica. Ecotoxicology 18:1087–1094

    CAS  Google Scholar 

  • Wehr JD, Whitton BA (1983a) Accumulation of heavy metals by aquatic mosses. 2: Rhynchostegium riparioides. Hydrobiologia 100:261–284

    CAS  Google Scholar 

  • Wehr JD, Whitton BA (1983b) Accumulation of heavy metals by aquatic mosses. 3: seasonal changes. Hydrobiologia 100:285–291

    CAS  Google Scholar 

  • Wehr JD, Empain A, Mouvet C, Say PJ, Whitton BA (1983) Methods for processing aquatic mosses used as monitors of heavy metals. Water Res 17(9):985–992

    CAS  Google Scholar 

  • Whitton BA (2003) Use of plants for monitoring heavy metals in freshwaters. In: Ambasht RS, Ambasht NK (eds) Modern trends in applied aquatic ecology. Kluwer Academic/Plenum Publishers, New York, pp 43–63

    Google Scholar 

  • Whitton BA, Say PJ, Jupp BP (1982) Accumulation of zinc, cadmium and lead by the aquatic liverwort Scapania. Environ Pollut 3:299–316

    CAS  Google Scholar 

  • Yurukova L, Gecheva G (2003) Active and passive biomonitoring using Fontinalis antipyretica in Maritsa River, Bulgaria. J Balkan Ecol 6(4):390–397

    CAS  Google Scholar 

  • Yurukova L, Gecheva G (2004) Biomonitoring in Maritsa River using aquatic bryophytes. J Environ Prot Ecol 5(4):729–735

    CAS  Google Scholar 

  • Yurukova LD, Ganeva AS, Damyanova AA (1996) Aquatic bryophytes as bioconcentrators of macro- and microelements. In: Carbonnel JP, Stamenov JN (eds) Observatorie de montagne de Moussala, OM2, 4. Bulgarian Academy of Sciences, Sofia, pp 127–136

    Google Scholar 

  • Yurukova L, Damyanova A, Ivanov K, Janminchev V (1997) Bioaccumulation capacity of Fontinalis antipyretica from Musalenska Bistrica River, Rila Mountain. In: Carbonnel JP, Stamenov JN (eds) Observatorie de montagne de Moussala, OM2, 6. Bulgarian Academy of Sciences, Sofia, pp 77–86

    Google Scholar 

  • Zhou Q, Zhang J, Fu J, Shi J, Jiang G (2008) Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606:135–150

    CAS  Google Scholar 

Download references

Acknowledgements

This review was completed through the combined efforts of the numerous scientists, who dedicated their researches on bryophytes and monitoring. Those authors have supported our interest in aquatic bryophytes and guided us. To all of them we are exceedingly grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gana Gecheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gecheva, G., Yurukova, L. (2013). Water Quality Monitoring by Aquatic Bryophytes. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Green Materials for Energy, Products and Depollution. Environmental Chemistry for a Sustainable World, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6836-9_9

Download citation

Publish with us

Policies and ethics