Skip to main content

Finite Element Limit Analysis and Porous Mises-Schleicher Material

  • Chapter
  • 948 Accesses

Abstract

By using the kinematic approach of limit analysis (LA) for a hollow sphere whose solid matrix obeys the von Mises criterion, Gurson (J. Eng. Mater. Technol. 99:2–15, 1977) derived a macroscopic criterion of ductile porous medium. The relevance of such criterion has been widely confirmed in several studies and in particular in Trillat and Pastor (Eur. J. Mech. A, Solids 24:800–819, 2005) through numerical lower and upper bound formulations of LA. In the present paper, these formulations are extended to the case of a pressure dependent matrix obeying the parabolic Mises-Schleicher criterion. This extension has been made possible by the use of a specific component of the conic optimization. We first provide the basics of LA for this class of materials and of the required conic optimization; then, the LA hollow sphere model and the resulting static and mixed kinematic codes are briefly presented. The obtained numerical bounds prove to be very accurate when compared to available exact solutions in the particular case of isotropic loadings. A second series of tests is devoted to assess the upper bound and approximate criterion established by Lee and Oung (J. Appl. Mech. 67:288–297, 2000), and also the criterion proposed by Durban et al. (Mech. Res. Commun. 37:636–641, 2010). As a matter of conclusion, these criteria can be considered as admissible only for a slight tension/compression asymmetry ratio for the matrix; in other words, our results show that the determination of the macroscopic criterion of the “porous Mises-Schleicher” material still remains an open problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdi R, Buhan PD, Pastor J (1994) Calculation of the critical height of a homogenized reinforced soil wall: a numerical approach. Int J Numer Anal Methods Geomech 18:485–505

    Article  MATH  Google Scholar 

  2. Anderheggen E, Knopfel H (1972) Finite element limit analysis using linear programming. Int J Solids Struct 8:1413–1431

    Article  MATH  Google Scholar 

  3. Aubertin M, Li L (1974) Yield locus studies of oriented polycarbonate: an anisotropic and pressure-dependent solid. Int J Mech Sci 16:789–799

    Article  Google Scholar 

  4. Aubertin M, Li L (2004) A porosity-dependent inelastic criterion for engineering materials. Int J Plast 20:2179–2208

    Article  MATH  Google Scholar 

  5. Durban D, Cohen T, Hollander Y (2010) Plastic response of porous solids with pressure sensitive matrix. Mech Res Commun 37:636–641

    Article  Google Scholar 

  6. Francescato P, Pastor J, Riveill-Reydet B (2004) Ductile failure of cylindrically porous materials, part I: plane stress problem and experimental results. Eur J Mech A, Solids 23:181–190

    Article  MATH  Google Scholar 

  7. Guo TF, Faleskog J, Shih CF (2008) Continuum modeling of a porous solid with pressure sensitive dilatant matrix. J Mech Phys Solids 56:2188–2212

    Article  MATH  Google Scholar 

  8. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth, part I: yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2–15

    Article  Google Scholar 

  9. Jeong HY (2002) A new yield function and a hydrostatic stress-controlled model for porous solids with pressure-sensitive matrices. Int J Solids Struct 39:1385–1403

    Article  MATH  Google Scholar 

  10. Kovrizhnykh AM (2004) Plane stress equations for the von Mises-Schleicher yield criterion. J Appl Mech Tech Phys 45:894–901

    Article  Google Scholar 

  11. Krabbenhoft K, Lyamin A, Hijaj M, Sloan S (2005) A new discontinuous upper bound limit analysis formulation. Int J Numer Methods Eng 63:1069–1088

    Article  MATH  Google Scholar 

  12. Leblond JB, Perrin G, Suquet P (1994) Exact results and approximate models for porous viscoplastic solids. Int J Plast 10:213–235

    Article  MATH  Google Scholar 

  13. Lee JH, Oung J (2000) Yield functions and flow rules for porous pressure-dependent strain-hardening polymeric materials. J Appl Mech 67:288–297

    Article  MATH  Google Scholar 

  14. Lubliner J (1990) Plasticity theory. McMillan, New York

    MATH  Google Scholar 

  15. Monchiet V, Kondo D (2012) Exact solution of a plastic hollow sphere with a Mises-Schleicher matrix. Int J Eng Sci 51:168–178

    Article  MathSciNet  Google Scholar 

  16. MOSEK ApS (2002) C/O Symbion Science Park, Fruebjergvej 3, Box 16, 2100 Copenhagen ϕ, Denmark

    Google Scholar 

  17. Pastor J (1978) Analyse limite : détermination numérique de solutions statiques complètes. Application au talus vertical. J Méc Appl 2:167–196

    Google Scholar 

  18. Pastor F (2007) Résolution par des méthodes de point intérieur de problèmes de programmation convexe posés par l’analyse limite. Thèse de doctorat, Facultés universitaires Notre-Dame de la Paix, Namur

    Google Scholar 

  19. Pastor F, Loute E (2005) Solving limit analysis problems: an interior-point method. Commun Numer Methods Eng 21(11):631–642

    Article  MathSciNet  MATH  Google Scholar 

  20. Pastor J, Turgeman S (1976) Mise en œuvre numérique des méthodes de l’analyse limite pour les matériaux de von Mises et de Coulomb standards en déformation plane. Mech Res Commun 3:469–474

    Article  MATH  Google Scholar 

  21. Pastor J, Francescato P, Trillat M, Loute E, Rousselier G (2004) Ductile failure of cylindrically porous materials, part II: other cases of symmetry. Eur J Mech A, Solids 23:191–201

    Article  MATH  Google Scholar 

  22. Pastor F, Loute E, Pastor J (2009) Limit analysis and convex programming: a decomposition approach of the kinematical mixed method. Int J Numer Methods Eng 78:254–274

    Article  MathSciNet  MATH  Google Scholar 

  23. Pastor F, Loute E, Pastor J, Trillat M (2009) Mixed method and convex optimization for limit analysis of homogeneous Gurson materials: a kinematical approach. Eur J Mech A, Solids 28:25–35

    Article  MATH  Google Scholar 

  24. Pastor F, Pastor J, Kondo D (2012) Limit analysis of hollow sphere or spheroid with Hill orthotropic matrix. C R, Méc 340:120–129

    Article  Google Scholar 

  25. Salençon J (1974) Théorie de la plasticité pour les applications à la mécanique des sols. Eyrolles, Paris

    MATH  Google Scholar 

  26. Salençon J (1983) Calcul à la rupture et analyse limite. Presses des Ponts et Chaussées, Paris

    Google Scholar 

  27. Schleicher F (1926) Der Spannungszustand an der Fließgrenze (Plastizitätsbedingung). Z Angew Math Mech 6:199–216

    Article  MATH  Google Scholar 

  28. Stassi-d’Alia F (1961) Une fonction quadratique des tensions principales comme conditions de plasticité des corps solides. Bull RILEM 13:44–45

    Google Scholar 

  29. Tal AB, Nemirovsky A (2001) Lectures on modern convex optimization. SIAM, Philadelphia

    MATH  Google Scholar 

  30. Theocaris PS (1995) Failure criteria for isotropic bodies revisited. Eng Fract Mech 51:239–264

    Article  Google Scholar 

  31. Thoré P, Pastor F, Pastor J (2011) Hollow sphere models, conic programming and third stress invariant. Eur J Mech A, Solids 30:63–71

    Article  MATH  Google Scholar 

  32. Trillat M, Pastor J (2005) Limit analysis and Gurson’s model. Eur J Mech A, Solids 24:800–819

    Article  MATH  Google Scholar 

  33. Zhang H, Ramesh KT, Chin E (2008) A multiaxial constitutive model for metal matrix composites. J Mech Phys Solids 56:2972–2983

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Pastor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pastor, F., Pastor, J., Kondo, D. (2014). Finite Element Limit Analysis and Porous Mises-Schleicher Material. In: Spiliopoulos, K., Weichert, D. (eds) Direct Methods for Limit States in Structures and Materials. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6827-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6827-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6826-0

  • Online ISBN: 978-94-007-6827-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics