Skip to main content

Cooperative Tasks Using Teams of Mobile Robots

  • Chapter
  • First Online:
IAENG Transactions on Engineering Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 247))

Abstract

The coordination framework for mobile robots called cluster space control is reviewed and implemented using different robotic platforms to demonstrate specific multirobot cooperative tasks. In particular, results on multirobot object transportation and target patrolling are presented through experimental tests. Additionally, simulations on a marine oil skimming mission performed with two autonomous surface vessels are presented to illustrate the wide range of possible multirobot applications utilizing the cluster space approach. The level of abstraction introduced by this coordination framework facilitates the execution of the tasks, allowing for specification, control and monitoring of formation parameters such as position, orientation and shape of the group, instead of the positions of the individual robot members.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitts C, Egerstedt M (2008) Design, control, and applications of real-world multirobot systems [from the guest editors]. Rob Auto Mag IEEE 15(1):8–8. doi:10.1109/M-RA.2007.914989

    Article  Google Scholar 

  2. Yamaguchi H, Arai T (1994) Distributed and autonomous control method for generating shape of multiple mobile robot group. In: Intelligent robots and systems, IROS ’94. Proceedings of the IEEE/RSJ/GI international conference on, vol 2:800–807. doi:10.1109/IROS.1994.407547

    Google Scholar 

  3. Tan KH, Lewis M (1996) Virtual structures for high-precision cooperative mobile robotic control. In: Intelligent robots and systems. IROS, Proceedings of the IEEE/RSJ international conference on, vol 1:132–139. doi:10.1109/IROS.1996.570643

    Google Scholar 

  4. Hashimoto M, Oba F, Eguchi T (1993) Dynamic control approach for motion coordination of multiple wheeled mobile robots transporting a single object. Intelligent robots and systems ’93, IROS ’93. Proceedings of the 1993 IEEE/RSJ international conference on, vol 3, pp 1944–1951. doi:10.1109/IROS.1993.583900

    Google Scholar 

  5. Rus D, Donald B, Jennings J (1995) Moving furniture with teams of autonomous robots. In: Intelligent Robots and Systems, Proceedings. 1995 IEEE/RSJ International Conference on, vol 1, pp 235–242. doi:10.1109/IROS.1995.525802

    Google Scholar 

  6. Tang CP, Bhatt R, Abou-Samah M, Krovi V (2006) Screw-theoretic analysis framework for cooperative payload transport by mobile manipulator collectives. Mechatron IEEE/ASME Trans 11(2):169–178. doi:10.1109/TMECH.2006.871092

    Article  Google Scholar 

  7. Siljak D (1991) Decentralized control of complex systems. Academic, New York

    Google Scholar 

  8. Tychonievich L, Cohoon J (2012) Coalescing swarms of limited capacity agents: Meeting and staying together (without trust). IAENG Int J Comput Sci 39(3):254–260

    Google Scholar 

  9. Balch T, Hybinette M, (2000) Behavior-based coordination of large-scale robot formations. MultiAgent Systems, (2000) Proceedings. Fourth international conference on, pp 363–364. doi:10.1109/ICMAS.2000.858476

    Google Scholar 

  10. Flinn E (2005) Testing for the ‘boids’. Aerosp America 43(6):28–29

    Google Scholar 

  11. Murray RM (2007) Recent research in cooperative control of multi-vehicle systems. J Dyn Syst Meas Control 129(5):571–583

    Article  Google Scholar 

  12. Dunbar W, Murray RM (2006) Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4):549–558

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhu W, Choi S (2011) A closed-loop bid adjustment approach to dynamic task allocation of robots. Eng Lett 19(4):279–288

    Google Scholar 

  14. Leonard N, Fiorelli E (2001) Virtual leaders, artificial potentials and coordinated control of groups. Decision and Control. Proceedings of the 40th IEEE Conference on, vol 3, pp 2968–2973. doi:10.1109/.2001.980728

    Google Scholar 

  15. Ogren P, Fiorelli E, Leonard N (2004) Cooperative control of mobile sensor networks:adaptive gradient climbing in a distributed environment. Auto Control IEEE Trans 49(8):1292–1302. doi:10.1109/TAC.2004.832203

    Article  MathSciNet  Google Scholar 

  16. Justh EW, Krishnaprasad PS (2004) Equilibria and steering laws for planar formations. Sys Control Lett 52:25–38

    Article  MathSciNet  MATH  Google Scholar 

  17. Pereira GAS, Kumar V, Spletzer J, Taylor CJ, Campos MFM (2002) Cooperative transport of planar objects by multiple mobile robots using object closure. Exp Rob VIII, 275–284

    Google Scholar 

  18. Mataric M, Nilsson M, Simsarian K (1995) Cooperative multi-robot box-pushing. Intelligent robots and systems. IEEE/RSJ international conference on, In, pp 556–561

    Google Scholar 

  19. Wang Z, Takano Y, Hirata Y, Kosuge K (2007) Decentralized cooperative object transportation by multiple mobile robots with a pushing leader. Distrib Auton Rob Sys 6:453–462. doi:10.1007-978-4-431-35873-2-44

    Article  Google Scholar 

  20. Song P, Kumar V (2002) A potential field based approach to multi-robot manipulation. In: Robotics and automation. IEEE international conference on, vol 2:1217–1222. doi:10.1109/ROBOT.2002.1014709

    Google Scholar 

  21. Fink J, Hsieh M, Kumar V (2008) Multi-robot manipulation via caging in environments with obstacles. In: Robotics and automation, 2008. ICRA 2008. IEEE international conference on, pp 1471–1476 (2008). doi:10.1109/ROBOT.2008.4543409

    Google Scholar 

  22. Yamashita A, Ota J, Arai T, Ichikawa K, Kamata K, Asama H (2001) Cooperative manipulation and transportation of a large object by multiple mobile robots. In: Asama H, Inoue H (eds) Intelligent autonomous vehicles 2001, pp 375–380

    Google Scholar 

  23. Tebeau P (2003) Us coast guard oil spill response research & development program, a decade of achievement. Tech. rep, DTIC Document

    Google Scholar 

  24. Kitts CA, Mas I (2009) Cluster space specification and control of mobile multirobot systems. Mechatron IEEE/ASME Trans 14(2):207–218. doi:10.1109/TMECH.2009.2013943

    Article  Google Scholar 

  25. Mas I, Kitts C (2010) Centralized and decentralized multi-robot control methods using the cluster space control framework. Advanced intelligent mechatronics (AIM), 2010 IEEE/ASME international conference on, pp 115–122. doi:10.1109/AIM.2010.5695768

    Google Scholar 

  26. Craig J (2005) Introduction to robotics. Mechanics and control, 3rd edn. Pearson Prentice Hall, NJ

    Google Scholar 

  27. Mas I, Kitts C (2012) Object manipulation using cooperative mobile multi-robot systems. Lecture Notes in Engineering and Computer Science: Proceedings of the world congress on engineering and computer science 2012. WCECS 2012:324–329

    Google Scholar 

  28. Antonelli G, Arrichiello F, Chiaverini S (2007) The entrapment/ escorting mission for a multi-robot system: theory and experiments. Advanced intelligent mechatronics, 2007 ieee/asme international conference on, pp 1–6. doi:10.1109/AIM.2007.4412504

    Google Scholar 

  29. Chevaleyre Y (2004) Theoretical analysis of the multi-agent patrolling problem. Intelligent agent technology, IEEE / WIC / ACM international conference on, pp 302–308 http://doi.ieeecomputersociety.org/10.1109/IAT.2004.1342959

  30. Mas I, Li S, Acain J, Kitts C (2009) Entrapment/escorting and patrolling missions in multi-robot cluster space control. Intelligent robots and systems. IEEE/RSJ international conference on, In, pp 5855–5861

    Google Scholar 

  31. Bhattacharya S, Heidarsson H, Sukhatme G, Kumar V (2011) Cooperative control of autonomous surface vehicles for oil skimming and cleanup. In: Robotics and automation (ICRA), 2011 IEEE international conference on, pp 2374–2379. IEEE (2011)

    Google Scholar 

  32. Arrichiello F, Heidarsson H, Chiaverini S, Sukhatme G (2010) Cooperative caging using autonomous aquatic surface vehicles. In: Robotics and automation (ICRA), 2010 IEEE international conference on, pp 4763–4769. IEEE (2010)

    Google Scholar 

  33. Mahacek P, Kitts C, Mas I (2012) Dynamic guarding of marine assets through cluster control of automated surface vessel fleets. Mechatron IEEE/ASME Trans 17(1):65–75. doi:10.1109/TMECH.2011.2174376

    Article  Google Scholar 

  34. Spletzer J, Das A, Fierro R, Taylor C, Kumar V, Ostrowski J (2001) Cooperative localization and control for multi-robot manipulation. In: Intelligent robots and systems, 2001. Proceedings. 2001 IEEE/RSJ international conference on, vol 2, pp 631–636 vol. 2. doi:10.1109/IROS.2001.976240

    Google Scholar 

  35. Neumann M, Adamek T, Mas I, Kitts C (2012) Extension of cluster space control for 3-vessel oil skimming. In: Proceedings of the 2012 ASME/JSME joint international conference on micromechatronics for information and precision equipment (MIPE2012) (2012)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Steve Li and Thomas Adamek for their help developing and maintaining the experimental testbeds and Mike Rasay for improving the Boe-Bot mechanical design. This work has been sponsored through a variety of funding sources to include Santa Clara University Technology Steering Committee grant TSC131 and National Science Foundation Grant No. CNS-0619940. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Mas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mas, I., Kitts, C. (2014). Cooperative Tasks Using Teams of Mobile Robots. In: Kim, H., Ao, SI., Amouzegar, M., Rieger, B. (eds) IAENG Transactions on Engineering Technologies. Lecture Notes in Electrical Engineering, vol 247. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6818-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6818-5_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6817-8

  • Online ISBN: 978-94-007-6818-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics