Skip to main content

Ballistic Behaviour in Bounded Velocity Transport

  • Chapter
  • First Online:
  • 1575 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 247))

Abstract

Stochastic models of bounded velocity transport are revisited. It is proven that these models exhibit short-time propagative (as opposed to diffusive) behavior for a large class of initial conditions. Numerical simulations also show that this propagative effect is different from the damped propagation predicted by common hyperbolic models. A fit of the density profiles is finally presented and a geometrical generalization of Fick’s law is also proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This last condition is sufficient but not necessary for the extrema at \(\pm\,{{x}^*}(t)\) to be maxima. The necessary and sufficient condition is \(D^* = - 3 \gamma ^* - \gamma ^{*3} \varvec{\Phi }^{\prime \prime }\left( \gamma ^* \right) <0\).

References

  1. Itina TE, Mamatkulov M, Sentis M (2005) Nonlinear fluence dependencies in femtosecond laser ablation of metals and dielectrics materials. Opt Eng 44(5):051109–051116

    Article  Google Scholar 

  2. Klossika JJ, Gratzke U, Vicanek M, Simon G (1996) Importance of a finite speed of heat propagation in metal irradiated by femtosecond laser pulses. Phys Rev B 54(15):10277–10279

    Article  Google Scholar 

  3. Chen HT, Song JP, Liu KC (2004) Study of hyperbolic heat conduction problem in IC Chip. Japanese, J Appl Phys 43(7A):4404–4410

    Article  Google Scholar 

  4. Jaunich MK et al (2006) Bio-heat transfer analysis during short pulse laser irradiation of tissues. Intl J Heat Mass Transf 51:5511–5521

    Article  Google Scholar 

  5. Kim K, Guo Z (2007) Multi-time-scale heat transfer modeling of turbid tissues exposed to short-pulse irradiations. Comput Methods Programs Biomed 86(2):112–123

    Article  Google Scholar 

  6. Freidberg J (2007) Plasma physics and fusion energy. Cambridge

    Google Scholar 

  7. Martin-Solis JR et al (2006) Enhanced production of runaway electrons during a disruptive termination of discharges heated with lower hybrid power in the frascati tokamak upgrade. Phys Rev Lett 97:165002

    Article  Google Scholar 

  8. Cattaneo C (1948) Sulla conduzione del calore. Atti Sem Mat Fis Univ Modena, 3.

    Google Scholar 

  9. Chevalier C, Debbasch F, Rivet JP (2008) A review of finite speed transport models. In: Proceedings of the second international forum on heat transfer (IFHT08), 17–19 Sept (2008), Tokyo, Japan, Heat Transfer Society of Japan

    Google Scholar 

  10. Herrera L, Pavon D (2001) Why hyperbolic theories of dissipation cannot be ignored: comments on a paper by Kostadt and Liu. Phys Rev D 64:088503

    Article  Google Scholar 

  11. Israel W (1987) Covariant fluid mechanics and thermodynamics: an introduction. In: Anile A, Choquet-Bruhat Y (eds) Relativistic fluid dynamics. Lecture notes in mathematics, vol 1385. Springer, Berlin.

    Google Scholar 

  12. Müller I, Ruggeri T (1993) Extended thermodynamics. Springer Tracts in Natural Philosophy, vol 37. Springer, New-York

    Google Scholar 

  13. Debbasch F, Espaze D, Foulonneau V (2012) Novel aspects of bounded veloity transport. In: Lecture notes in engineering and computer science: proceedings of the world congress on engineering and computer science, WCECS 2012, USA, San Francisco, 24–26 Oct 2012, pp 1198–1201

    Google Scholar 

  14. Debbasch F, Mallick K, Rivet JP (1997) Relativistic Ornstein-Uhlenbeck process. J Stat Phys 88:945

    Article  MathSciNet  MATH  Google Scholar 

  15. Debbasch F, Chevalier C (2006) Relativistic stochastic processes. In: Proceedings of XV conference on non-equilibrium statistical mechanics and nonlinear physics, Mar del Plata, Argentina, 4–8 Dec 2006, A.I.P. Conference Proceedings, 2007

    Google Scholar 

  16. Debbasch F (2008) Equilibrium distribution function of a relativistic dilute perfect gas. Process Phys A 387:2443–2454

    Article  MathSciNet  Google Scholar 

  17. Jüttner F (1911) Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie. Ann Phys (Leipzig) 34:856

    Article  MATH  Google Scholar 

  18. Angst J, Franchi J (2007) Central limit theorem for a class of relativistic diffusions. J Math Phys 48(8)

    Google Scholar 

  19. Debbasch F, Rivet JP (1998) A diffusion equation from the relativistic Ornstein-Uhlenbeck process. J Stat Phys 90:1179

    Article  MathSciNet  MATH  Google Scholar 

  20. Chevalier C, Debbasch F (2007) Multi-scale diffusion on an interface. Eur Phys Lett 77:20005–20009

    Article  MathSciNet  Google Scholar 

  21. Chevalier C, Debbasch F (2008) Is brownian motion sensitive to geometry fluctuations? J Stat Phys 131:717–731

    Article  MathSciNet  MATH  Google Scholar 

  22. Itô K (1950) On stochastic differential equations on a differentiable manifold. Nagoy Math J 1:35–47

    MATH  Google Scholar 

  23. Itô K (1953) On stochastic differential equations on a differentiable manifold ii. M.K. 28:82–85

    Google Scholar 

  24. Øksendal B (1998) Stochastic differential equations, 5th edn. Universitext, Springer, Berlin

    Google Scholar 

  25. Chevalier C, Debbasch F (2010) Lateral diffusions: the influence of geometry fluctuations. Eur Phys Lett 89(3):38001

    Article  Google Scholar 

  26. Debbasch F, Di Molfetta G, Espaze D, Foulonneau V (2012) Propagation in quantum walks and relativistic diffusions. Accepted for publication in Physica Scripta

    Google Scholar 

Download references

Acknowledgments

Part of this work was funded by the ANR Grant 09-BLAN-0364-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Debbasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Debbasch, F., Espaze, D., Foulonneau, V. (2014). Ballistic Behaviour in Bounded Velocity Transport. In: Kim, H., Ao, SI., Amouzegar, M., Rieger, B. (eds) IAENG Transactions on Engineering Technologies. Lecture Notes in Electrical Engineering, vol 247. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6818-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6818-5_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6817-8

  • Online ISBN: 978-94-007-6818-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics