Skip to main content

Nutrition in Preterm Infants with Bronchopulmonary Dysplasia

  • Chapter
  • First Online:
Nutrition for the Preterm Neonate

Abstract

Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth. Currently most infants developing BPD are extremely preterm infants who develop chronic lung inflammation despite being treated with antenatal steroids, early surfactant and gentle ventilation. This new form of BPD is caused mainly by premature arrest of alveolarization, and lung growth, and not predominantly by iatrogenic lung injury. Undernutrition, specifically insufficient protein intake, has been considered to play an important role in the pathogenesis of the new BPD. Infants with BPD have higher energy requirements and oxygen consumption than healthy preterm infants. Nutritional support for preterm infants with BPD includes early and aggressive parenteral nutrition, high protein and energy intakes, balancing of lipids and carbohydrates and fluid restriction. Protein intakes of 4.5 g/kg/day have been reported to be well tolerated by preterm infants. Glucose administration is limited by glucose oxidative capacity, above which glucose is converted into fat in an energy inefficient process that results in increased basal energy expenditure, oxygen consumption and CO2 production. Lipids provide essential fatty acids, improve bioavailability of fat-soluble vitamins, provide energy, and limit conversion of carbohydrates to fat. Recent studies do not support an association between early lipid administration and BPD. Enteral feeding difficulties in infants with BPD include inability to tolerate higher volume of enteral feeds; limitations imposed by fluid restriction, gastroesophageal reflux, and importantly, delayed suck-swallow maturation, difficulties in feeding-breathing coordination, and fatigue. The current strategies for parenteral and enteral nutrition in infants with BPD are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jobe AH, Bancalari E (2001) Bronchopulmonary dysplasia. Am J Resp Crit Care Med 163(7):1723–1729

    PubMed  CAS  Google Scholar 

  2. Northway WH, Jr., Rosan RC, Porter DY (1967) Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. New Engl J Med 276(7):357–368

    Google Scholar 

  3. Jobe AH (2006) The New BPD. NeoReviews 7(10):e531–e544

    Google Scholar 

  4. Kair LR, Leonard DT, Anderson JDM (2012) Pediatr Rev 33(6):255–264

    Google Scholar 

  5. Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC et al (2010) Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics 126(3):443–456

    PubMed  Google Scholar 

  6. Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA et al (2005) Validation of the national institutes of health consensus definition of bronchopulmonary dysplasia. Pediatrics 116(6):1353–1360

    PubMed  Google Scholar 

  7. Johnson TJ, Patel AL, Jegier BJ, Engstrom JL, Meier PP (2013) Cost of morbidities in very low birth weight infants. J Pediatr 162(2):243–249

    Google Scholar 

  8. Klinger G, Sirota L, Lusky A, Reichman B (2006) Bronchopulmonary dysplasia in very low birth weight infants is associated with prolonged hospital stay. J Perinat Off J Calif Perinat Assoc 26(10):640–644

    CAS  Google Scholar 

  9. Karagianni P, Tsakalidis C, Kyriakidou M, Mitsiakos G, Chatziioanidis H, Porpodi M et al (2011) Neuromotor outcomes in infants with bronchopulmonary dysplasia. Pediatr Neurol 44(1):40–46

    PubMed  Google Scholar 

  10. Clark RH, Gerstmann DR, Jobe AH, Moffitt ST, Slutsky AS, Yoder BA (2001) Lung injury in neonates: causes, strategies for prevention, and long-term consequences. J Pediatr 139(4):478–486

    PubMed  CAS  Google Scholar 

  11. Eber E, Zach MS (2001) Long term sequelae of bronchopulmonary dysplasia (chronic lung disease of infancy). Thorax 56(4):317–323

    PubMed  CAS  Google Scholar 

  12. Anderson PJ, Doyle LW (2006) Neurodevelopmental outcome of bronchopulmonary dysplasia. Semin Perinatol 30(4):227–232

    PubMed  Google Scholar 

  13. Hack M, Fanaroff AA (2000) Outcomes of children of extremely low birthweight and gestational age in the 1990s. Semin neonatol SN 5(2):89–106

    CAS  Google Scholar 

  14. Skidmore MD, Rivers A, Hack M (1990) Increased risk of cerebral palsy among very low-birthweight infants with chronic lung disease. Dev Med Child Neurol 32(4):325–332

    PubMed  CAS  Google Scholar 

  15. Bassler D, Stoll BJ, Schmidt B, Asztalos EV, Roberts RS, Robertson CM et al (2009) Using a count of neonatal morbidities to predict poor outcome in extremely low birth weight infants: added role of neonatal infection. Pediatrics 123(1):313–318

    PubMed  Google Scholar 

  16. Kamath BD, Macguire ER, McClure EM, Goldenberg RL, Jobe AH (2011) Neonatal mortality from respiratory distress syndrome: lessons for low-resource countries. Pediatrics 127(6):1139–1146

    Google Scholar 

  17. Jobe AH (2011) The new bronchopulmonary dysplasia. Curr Opin Pediatr 23(2):167–172

    PubMed  Google Scholar 

  18. Miller JD, Benjamin JT, Kelly DR, Frank DB, Prince LS (2010) Chorioamnionitis stimulates angiogenesis in saccular stage fetal lungs via CC chemokines. Am J Physiol-Lung C 298(5):L637–L645

    Google Scholar 

  19. Been JV, Rours IG, Kornelisse RF, Jonkers F, de Krijger RR, Zimmermann LJ (2010) Chorioamnionitis alters the response to surfactant in preterm infants. J Pediatr 156(1):10–15 e11

    Google Scholar 

  20. Soraisham AS, Singhal N, McMillan DD, Sauve RS, Lee SK (2009) A multicenter study on the clinical outcome of chorioamnionitis in preterm infants. Am J Obstet Gynecol 200(4):372 e371–e376

    Google Scholar 

  21. Vento M, Moro M, Escrig R, Arruza L, Villar G, Izquierdo I et al (2009) Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. Pediatrics 124(3):e439–e449

    Google Scholar 

  22. Carlo WA, Finer NN, Walsh MC, Rich W, Gantz MG, Laptook AR et al (2010) Target ranges of oxygen saturation in extremely preterm infants. New Engl J Med 362(21):1959–1969

    PubMed  CAS  Google Scholar 

  23. Vadivel A, Aschner JL, Rey-Parra GJ, Magarik J, Zeng H, Summar M et al (2010) L-citrulline attenuates arrested alveolar growth and pulmonary hypertension in oxygen-induced lung injury in newborn rats. Pediatr Res 68(6):519–525

    PubMed  CAS  Google Scholar 

  24. Mokres LM, Parai K, Hilgendorff A, Ertsey R, Alvira CM, Rabinovitch M et al (2010) Prolonged mechanical ventilation with air induces apoptosis and causes failure of alveolar septation and angiogenesis in lungs of newborn mice. Am J Physiol-Lung C 298(1):L23–L35

    Google Scholar 

  25. Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet JM, Carlin JB (2008) Nasal CPAP or intubation at birth for very preterm infants. New Engl J Med 358(7):700–708

    PubMed  CAS  Google Scholar 

  26. Kribs A, Hartel C, Kattner E, Vochem M, Kuster H, Moller J et al (2010) Surfactant without intubation in preterm infants with respiratory distress: first multi-center data. Klin Padiatr 222(1):13–17

    PubMed  Google Scholar 

  27. Albertine KH, Jones GP, Starcher BC, Bohnsack JF, Davis PL, Cho SC et al (1999) Chronic lung injury in preterm lambs. Disordered respiratory tract development. Am J Resp Crit C 159(3):945–958

    CAS  Google Scholar 

  28. Doyle LW, Halliday HL, Ehrenkranz RA, Davis PG, Sinclair JC (2005) Impact of postnatal systemic corticosteroids on mortality and cerebral palsy in preterm infants: effect modification by risk for chronic lung disease. Pediatrics 115(3):655–661

    Google Scholar 

  29. Frank L, Sosenko IR (1988) Undernutrition as a major contributing factor in the pathogenesis of bronchopulmonary dysplasia. Am Rev Respir Dis 138(3):725–729

    PubMed  CAS  Google Scholar 

  30. Frank L (1992) Antioxidants, nutrition, and bronchopulmonary dysplasia. Clin Perinatol 19(3):541–562

    PubMed  CAS  Google Scholar 

  31. Bhatia J, Parish A (2009) Nutrition and the lung. Neonatology 95(4):362–367

    PubMed  CAS  Google Scholar 

  32. Clark RH, Thomas P, Peabody J (2003) Extrauterine growth restriction remains a serious problem in prematurely born neonates. Pediatrics 111(5 Pt 1):986–990

    Google Scholar 

  33. Massaro GD, Radaeva S, Clerch LB, Massaro D (2002) Lung alveoli: endogenous programmed destruction and regeneration. Am J Physiol-Lung C 283(2):L305–L309

    Google Scholar 

  34. Mataloun MM, Rebello CM, Mascaretti RS, Dohlnikoff M, Leone CR (2006) Pulmonary responses to nutritional restriction and hyperoxia in premature rabbits. J Pediatr 82(3):179–185

    Google Scholar 

  35. Polgar G, Antagnoli W, Ferrigan LW, Martin EA, Gregg WP (1966) The effect of chronic exposure to 100 % oxygen in newborn mice. Am J Med Sci 252(5):580–587

    PubMed  CAS  Google Scholar 

  36. Deneke SM, Gershoff SN, Fanburg BL (1983) Potentiation of oxygen toxicity in rats by dietary protein or amino acid deficiency. J Appl Physiol 54(1):147–151

    PubMed  CAS  Google Scholar 

  37. Coxson HO, Chan IH, Mayo JR, Hlynsky J, Nakano Y, Birmingham CL (2004) Early emphysema in patients with anorexia nervosa. Am J Resp Crit Care 170(7):748–752

    Google Scholar 

  38. Ong TJ, Mehta A, Ogston S, Mukhopadhyay S (1998) Prediction of lung function in the inadequately nourished. Arch Dis Child 79(1):18–21

    PubMed  CAS  Google Scholar 

  39. Abrams SA (2001) Chronic pulmonary insufficiency in children and its effects on growth and development. J Nutr 131(3):938S–941S

    PubMed  CAS  Google Scholar 

  40. Jobe AH (2006) Let’s feed the preterm lung. J Pediatr 82(3):165–166

    Google Scholar 

  41. Bell EF, Acarregui MJ (2008) Restricted versus liberal water intake for preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev (1):CD000503

    Google Scholar 

  42. Wemhoner A, Ortner D, Tschirch E, Strasak A, Rudiger M (2011) Nutrition of preterm infants in relation to bronchopulmonary dysplasia. BMC Pulm Med 11:7

    PubMed  Google Scholar 

  43. Reynolds RM, Thureen PJ (2007) Special circumstances: trophic feeds, necrotizing enterocolitis and bronchopulmonary dysplasia. Semin Fetal Neonat Med 12(1):64–70

    Google Scholar 

  44. Hulzebos CV, Sauer PJ (2007) Energy requirements. Semin Fetal Neonat Med 12(1):2–10

    Google Scholar 

  45. Leitch CA, Denne SC (2000) Energy expenditure in the extremely low-birth weight infant. Clin Perinatol 27(1):181–195, vii–viii

    Google Scholar 

  46. Agostoni C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T et al (2010) Enteral nutrient supply for preterm infants: commentary from the european society of paediatric gastroenterology, hepatology and nutrition committee on nutrition. J Pediatr Gastr Nutr 50(1):85–91

    CAS  Google Scholar 

  47. Bauer J, Maier K, Hellstern G, Linderkamp O (2003) Longitudinal evaluation of energy expenditure in preterm infants with birth weight less than 1,000 g. Br J Nutr 89(4):533–537

    PubMed  CAS  Google Scholar 

  48. DeMarie MP, Hoffenberg A, Biggerstaff SL, Jeffers BW, Hay WW Jr., Thureen PJ (1999) Determinants of energy expenditure in ventilated preterm infants. J Perinat Med 27(6):465–472

    Google Scholar 

  49. Bauer J, Maier K, Muehlbauer B, Poeschl J, Linderkamp O (2003) Energy expenditure and plasma catecholamines in preterm infants with mild chronic lung disease. Early Hum Dev 72(2):147–157

    PubMed  CAS  Google Scholar 

  50. Yeh TF, McClenan DA, Ajayi OA, Pildes RS (1989) Metabolic rate and energy balance in infants with bronchopulmonary dysplasia. J Pediatr 114(3):448–451

    PubMed  CAS  Google Scholar 

  51. Kurzner SI, Garg M, Bautista DB, Sargent CW, Bowman CM, Keens TG (1988) Growth failure in bronchopulmonary dysplasia: elevated metabolic rates and pulmonary mechanics. J Pediatr 112(1):73–80

    PubMed  CAS  Google Scholar 

  52. Kurzner SI, Garg M, Bautista DB, Bader D, Merritt RJ, Warburton D et al (1988) Growth failure in infants with bronchopulmonary dysplasia: nutrition and elevated resting metabolic expenditure. Pediatrics 81(3):379–384

    PubMed  CAS  Google Scholar 

  53. Weinstein MR, Oh W (1981) Oxygen consumption in infants with bronchopulmonary dysplasia. J Pediatr 99(6):958–961

    PubMed  CAS  Google Scholar 

  54. Kalhan SC, Denne SC (1990) Energy consumption in infants with bronchopulmonary dysplasia. J Pediatr 116(4):662–664

    PubMed  CAS  Google Scholar 

  55. Carnielli VP, Verlato G, Benini F, Rossi K, Cavedagni M, Filippone M et al (2000) Metabolic and respiratory effects of theophylline in the preterm infant. Arch Dis Child Fetal Neonat Ed 83(1):F39–F43

    Google Scholar 

  56. Kao LC, Durand DJ, Nickerson BG (1988) Improving pulmonary function does not decrease oxygen consumption in infants with bronchopulmonary dysplasia. J Pediatr 112(4):616–621

    PubMed  CAS  Google Scholar 

  57. Lai NM, Rajadurai SV, Tan KH (2006) Increased energy intake for preterm infants with (or developing) bronchopulmonary dysplasia/chronic lung disease. Cochrane Database Syst Rev 3:CD005093

    Google Scholar 

  58. Biniwale MA, Ehrenkranz RA (2006) The role of nutrition in the prevention and management of bronchopulmonary dysplasia. Semin Perinat 30(4):200–208

    Google Scholar 

  59. Ehrenkranz RA, Das A, Wrage LA, Poindexter BB, Higgins RD, Stoll BJ et al (2011) Early nutrition mediates the influence of severity of illness on extremely LBW infants. Pediatr Res 69(6):522–529

    PubMed  CAS  Google Scholar 

  60. Bell EF, Warburton D, Stonestreet BS, Oh W (1980) Effect of fluid administration on the development of symptomatic patent ductus arteriosus and congestive heart failure in premature infants. New Engl J Med 302(11):598–604

    PubMed  CAS  Google Scholar 

  61. Dani C, Poggi C (2012) Nutrition and bronchopulmonary dysplasia. J Matern-Fetal Neonat Med Off J Eur Assn Perinat Med, Fed Asia Oceania Perinat Soc, Int Soc Perinat Obstet 25(Suppl 3):37–40

    Google Scholar 

  62. Oh W, Poindexter BB, Perritt R, Lemons JA, Bauer CR, Ehrenkranz RA et al (2005) Association between fluid intake and weight loss during the first ten days of life and risk of bronchopulmonary dysplasia in extremely low birth weight infants. J Pediatr 147(6):786–790

    PubMed  Google Scholar 

  63. Stephens BE, Gargus RA, Walden RV, Mance M, Nye J, McKinley L et al (2008) Fluid regimens in the first week of life may increase risk of patent ductus arteriosus in extremely low birth weight infants. J Perinat Off J California Perinat Assoc 28(2):123–128

    CAS  Google Scholar 

  64. Thureen PJ, Melara D, Fennessey PV, Hay WW Jr (2003) Effect of low versus high intravenous amino acid intake on very low birth weight infants in the early neonatal period. Pediatr Res 53(1):24–32

    PubMed  CAS  Google Scholar 

  65. Hay WW Jr (2008) Strategies for feeding the preterm infant. Neonatology 94(4):245–254

    PubMed  Google Scholar 

  66. Yunis KA, Oh W (1989) Effects of intravenous glucose loading on oxygen consumption, carbon dioxide production, and resting energy expenditure in infants with bronchopulmonary dysplasia. J Pediatr 115(1):127–132

    PubMed  CAS  Google Scholar 

  67. Chessex P, Belanger S, Piedboeuf B, Pineault M (1995) Influence of energy substrates on respiratory gas exchange during conventional mechanical ventilation of preterm infants. J Pediatr 126(4):619–624

    PubMed  CAS  Google Scholar 

  68. Sauer PJ, Van Aerde JE, Pencharz PB, Smith JM, Swyer PR (1986) Glucose oxidation rates in newborn infants measured with indirect calorimetry and [U-13C]glucose. Clin Sci (Lond) 70(6):587–593

    CAS  Google Scholar 

  69. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M et al (2001) Intensive insulin therapy in critically ill patients. New Engl J Med 345(19):1359–1367

    Google Scholar 

  70. Beardsall K, Vanhaesebrouck S, Ogilvy-Stuart AL, Ahluwalia JS, Vanhole C, Palmer C et al (2007) A randomised controlled trial of early insulin therapy in very low birth weight infants, “NIRTURE” (neonatal insulin replacement therapy in Europe). BMC Pediatr 7:29

    PubMed  Google Scholar 

  71. Beardsall K, Ogilvy-Stuart AL, Frystyk J, Chen JW, Thompson M, Ahluwalia J et al (2007) Early elective insulin therapy can reduce hyperglycemia and increase insulin-like growth factor-I levels in very low birth weight infants. J Pediatr 151(6):611–617, 617:e611

    Google Scholar 

  72. Van Aerde JE, Narvey M (2006) Acute respiratory failure. In: Thureen P, Hay Jr W.W (eds) Neobatal nutrition and metabolism. Cambridge University Press, Cambridge p 508–521

    Google Scholar 

  73. Simmer K, Rao SC (2005) Early introduction of lipids to parenterally-fed preterm infants. Cochrane Database Syst Rev 2:CD005256–C

    Google Scholar 

  74. Innis SM (2007) Fatty acids and early human development. Early Hum Dev 83(12):761–766

    PubMed  CAS  Google Scholar 

  75. Innis SM (2007) Dietary (n −3) fatty acids and brain development. J Nutr 137(4):855–859

    PubMed  CAS  Google Scholar 

  76. Fleith M, Clandinin MT (2005) Dietary PUFA for preterm and term infants: review of clinical studies. Crit Rev Food Sci 45(3):205–229

    CAS  Google Scholar 

  77. Sosenko IR, Rodriguez-Pierce M, Bancalari E (1993) Effect of early initiation of intravenous lipid administration on the incidence and severity of chronic lung disease in premature infants. J Pediatr 123(6):975–982

    PubMed  CAS  Google Scholar 

  78. Periera GR, Fox WW, Stanley CA, Baker L, Schwartz JG (1980) Decreased oxygenation and hyperlipemia during intravenous fat infusions in premature infants. Pediatrics 66(1):26–30

    PubMed  CAS  Google Scholar 

  79. Cooke RW (1991) Factors associated with chronic lung disease in preterm infants. Arch Dis Child 66(7 Spec No):776–779

    Google Scholar 

  80. Brownlee KG, Kelly EJ, Ng PC, Kendall-Smith SC, Dear PR (1993) Early or late parenteral nutrition for the sick preterm infant? Arch Dis Child 69(3 Spec No):281–283

    Google Scholar 

  81. Deckelbaum RJ (2003) Intravenous lipid emulsions in pediatrics: time for a change? J Pediatr Gastr Nutr 37(2):112–114

    Google Scholar 

  82. Rayyan M, Devlieger H, Jochum F, Allegaert K (2012) Short-term use of parenteral nutrition with a lipid emulsion containing a mixture of soybean oil, olive oil, medium-chain triglycerides, and fish oil: a randomized double-blind study in preterm infants. JPEN 36(1 Suppl):81S–94S

    Google Scholar 

  83. D’Ascenzo R, D’Egidio S, Angelini L, Bellagamba MP, Manna M, Pompilio A et al (2011) Parenteral nutrition of preterm infants with a lipid emulsion containing 10 % fish oil: effect on plasma lipids and long-chain polyunsaturated fatty acids. J Pediatr 159(1):33–38 e31

    Google Scholar 

  84. Sala-Vila A, Barbosa VM, Calder PC (2007) Olive oil in parenteral nutrition. Curr Opin Clin Nutri Metab Care 10(2):165–174

    CAS  Google Scholar 

  85. Skouroliakou M, Konstantinou D, Agakidis C, Delikou N, Koutri K, Antoniadi M et al (2012) Cholestasis, Bronchopulmonary Dysplasia, and Lipid Profile in Preterm Infants Receiving MCT/omega-3-PUFA-Containing or Soybean-Based Lipid Emulsions. Nutr Clin Pract Off Publ Am Soc Parenter Enter 27(6):817–824

    Google Scholar 

  86. Ganapathy V, Hay JW, Kim JH (2012) Costs of necrotizing enterocolitis and cost-effectiveness of exclusively human milk-based products in feeding extremely premature infants. Breastfeeding Med Off J Acad Breastfeeding Med 7(1):29–37

    Google Scholar 

  87. Deshpande G, Rao S, Patole S (2007) Probiotics for prevention of necrotising enterocolitis in preterm neonates with very low birthweight: a systematic review of randomised controlled trials. Lancet 369(9573):1614–1620

    PubMed  Google Scholar 

  88. Alfaleh K, Anabrees J, Bassler D, Al-Kharfi T (2011) Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev 3:CD005496

    Google Scholar 

  89. Finlay ER, Subhedar NV (2000) Pulmonary haemorrhage in preterm infants. Eur J Pediatr 159(11):870–871

    PubMed  CAS  Google Scholar 

  90. Blondheim O, Abbasi S, Fox WW, Bhutani VK (1993) Effect of enteral gavage feeding rate on pulmonary functions of very low birth weight infants. J Pediatr 122(5 Pt 1):751–755

    Google Scholar 

  91. Premji SS, Chessell L (2011) Continuous nasogastric milk feeding versus intermittent bolus milk feeding for premature infants less than 1,500 g. Cochrane Database Syst Rev 11:CD001819

    Google Scholar 

  92. Keens TG, Bryan AC, Levison H, Ianuzzo CD (1978) Developmental pattern of muscle fiber types in human ventilatory muscles. J Appl Physiol 44(6):909–913

    PubMed  CAS  Google Scholar 

  93. Lewis MI, Sieck GC, Fournier M, Belman MJ (1986) Effect of nutritional deprivation on diaphragm contractility and muscle fiber size. J Appl Physiol 60(2):596–603

    PubMed  CAS  Google Scholar 

  94. Vassilakopoulos T, Petrof BJ (2004) Ventilator-induced diaphragmatic dysfunction. Am J Resp Crit Care 169(3):336–341

    Google Scholar 

  95. Sassoon CS (2002) Ventilator-associated diaphragmatic dysfunction. Am J Resp Crit Care 166(8):1017–1018

    Google Scholar 

  96. Doekel RC, Jr., Zwillich CW, Scoggin CH, Kryger M, Weil JV (1976) Clinical semi-starvation: depression of hypoxic ventilatory response. New Engl J Med 295(7):358–361

    Google Scholar 

  97. Kinney JM, Askanazi J, Gump FE, Foster RJ, Hyman AI (1980) Use of the ventilatory equivalent to separate hypermetabolism from increased dead space ventilation in the injured or septic patient. J Trauma 20(2):111–119

    PubMed  CAS  Google Scholar 

  98. Askanazi J, Weissman C, LaSala PA, Milic-Emili J, Kinney JM (1984) Effect of protein intake on ventilatory drive. Anesthesiology 60(2):106–110

    PubMed  CAS  Google Scholar 

  99. Campfield LA, Smith FJ, Rosenbaum M (1992) Human hunger: is there a role for blood glucose dynamics? Appetite 18(3):244

    PubMed  CAS  Google Scholar 

  100. Jadcherla SR (2012) Pathophysiology of aerodigestive pulmonary disorders in the neonate. Clin Perinatol 39(3):639–654

    PubMed  Google Scholar 

  101. Mendes TB, Mezzacappa MA, Toro AA, Ribeiro JD (2008) Risk factors for gastroesophageal reflux disease in very low birth weight infants with bronchopulmonary dysplasia. J Pediatr 84(2):154–159

    Google Scholar 

  102. Akinola E, Rosenkrantz TS, Pappagallo M, McKay K, Hussain N (2004) Gastroesophageal reflux in infants < 32 weeks gestational age at birth: lack of relationship to chronic lung disease. Am J Perinat 21(2):57–62

    Google Scholar 

  103. McCain GC, Gartside PS, Greenberg JM, Lott JW (2001) A feeding protocol for healthy preterm infants that shortens time to oral feeding. J Pediatr 139(3):374–379

    PubMed  CAS  Google Scholar 

  104. Pridham K, Brown R, Sondel S, Green C, Wedel NY, Lai HC (1998) Transition time to full nipple feeding for premature infants with a history of lung disease. J Obst, Gyn, Neonat Nur: JOGNN/NAACOG 27(5):533–545

    CAS  Google Scholar 

  105. Howe TH, Sheu CF, Holzman IR (2007) Bottle-feeding behaviors in preterm infants with and without bronchopulmonary dysplasia. Am J Occup Ther: Off Publ Am Occup Ther Assoc 61(4):378–383

    Google Scholar 

  106. Palmer MM, Crawley K, Blanco IA (1993) Neonatal Oral-Motor Assessment scale: a reliability study. J Perinat Off J Calif Perinat Assoc 13(1):28–35

    CAS  Google Scholar 

  107. Gewolb IH, Vice FL (2006) Abnormalities in the coordination of respiration and swallow in preterm infants with bronchopulmonary dysplasia. Dev Med Child Neurol 48(7):595–599

    PubMed  Google Scholar 

  108. Gewolb IH, Vice FL (2006) Maturational changes in the rhythms, patterning, and coordination of respiration and swallow during feeding in preterm and term infants. Dev Med Child Neurol 48(7):589–594

    PubMed  Google Scholar 

  109. Gewolb IH, Bosma JF, Taciak VL, Vice FL (2001) Abnormal developmental patterns of suck and swallow rhythms during feeding in preterm infants with bronchopulmonary dysplasia. Dev Med Child Neurol 43(7):454–459

    PubMed  CAS  Google Scholar 

  110. Mizuno K, Nishida Y, Taki M, Hibino S, Murase M, Sakurai M et al (2007) Infants with bronchopulmonary dysplasia suckle with weak pressures to maintain breathing during feeding. Pediatrics 120(4):e1035–e1042

    Google Scholar 

  111. Craig CM, Lee DN, Freer YN, Laing IA (1999) Modulations in breathing patterns during intermittent feeding in term infants and preterm infants with bronchopulmonary dysplasia. Dev Med Child Neurol 41(9):616–624

    PubMed  CAS  Google Scholar 

  112. McCain GC, Del Moral T, Duncan RC, Fontaine JL, Pino LD (2012) Transition From Gavage to Nipple Feeding for Preterm Infants With Bronchopulmonary Dysplasia. Nurs Res 61(6):380–387

    PubMed  Google Scholar 

  113. Schmidt B, Davis P, Moddemann D, Ohlsson A, Roberts RS, Saigal S et al (2001) Long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. New Engl J Med 344(26):1966–1972

    PubMed  CAS  Google Scholar 

  114. Young TE, Marshall DD, Bose CL, O’Shea TM (2006) Early fluid intake and chronic lung disease. J Pediatr 149(5):732; author reply 732

    Google Scholar 

  115. Spears K, Cheney C, Zerzan J (2004) Low plasma retinol concentrations increase the risk of developing bronchopulmonary dysplasia and long-term respiratory disability in very-low-birth-weight infants. Am J Clin Nutr 80(6):1589–1594

    PubMed  CAS  Google Scholar 

  116. Darlow BA, Graham PJ (2011) Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birthweight infants. Cochrane Database Syst Rev 10:CD000501

    Google Scholar 

  117. Janvier A, Lantos J, Barrington K (2013) The politics of probiotics: probiotics, necrotizing enterocolitis and the ethics of neonatal research. Acta Paediatr 102(2):116–118

    Google Scholar 

  118. Claud EC, Walker WA (2001) Hypothesis: inappropriate colonization of the premature intestine can cause neonatal necrotizing enterocolitis. FASEB J: (Official publication of the Federation of American Societies for Experimental Biology) 15(8):1398–1403

    CAS  Google Scholar 

  119. Deshpande G, Rao S, Patole S, Bulsara M (2010) Updated meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Pediatrics 125(5):921–930

    PubMed  Google Scholar 

  120. Forman HJ, Rotman EI, Fisher AB (1983) Roles of selenium and sulfur-containing amino acids in protection against oxygen toxicity. Lab Invest; J Tech Methods Pathol 49(2):148–153

    CAS  Google Scholar 

  121. Darlow BA, Austin NC (2003) Selenium supplementation to prevent short-term morbidity in preterm neonates Cochrane Database Syst Rev 4:CD003312

    Google Scholar 

  122. Howlett A, Ohlsson A (2003) Inositol for respiratory distress syndrome in preterm infants Cochrane Database Syst Rev 4:CD000366

    Google Scholar 

  123. Howlett A, Ohlsson A, Plakkal N (2012) Inositol for respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev 3:CD000366

    Google Scholar 

  124. Moe-Byrne T, Wagner JV, McGuire W (2012) Glutamine supplementation to prevent morbidity and mortality in preterm infants. Cochrane Database Syst Rev 3:CD001457

    PubMed  Google Scholar 

  125. Soghier LM, Brion LP (2006) Cysteine, cystine or N-acetylcysteine supplementation in parenterally fed neonates. Cochrane Database Syst Rev 4:CD004869

    Google Scholar 

  126. Marks KA, Reichman B, Lusky A, Zmora E (2006) Fetal growth and postnatal growth failure in very-low-birthweight infants. Acta Paediatr 95(2):236–242

    PubMed  Google Scholar 

  127. Wood NS, Costeloe K, Gibson AT, Hennessy EM, Marlow N, Wilkinson AR (2003) The EPICure study: growth and associated problems in children born at 25 weeks of gestational age or less. Arch Dis Child Fetal Neonat Ed 88(6):F492–F500

    Google Scholar 

  128. Brunton JA, Saigal S, Atkinson SA (1998) Growth and body composition in infants with bronchopulmonary dysplasia up to 3 months corrected age: a randomized trial of a high-energy nutrient-enriched formula fed after hospital discharge. J Pediatr 133(3):340–345

    PubMed  CAS  Google Scholar 

  129. Madden J, Kobaly K, Minich NM, Schluchter M, Wilson-Costello D, Hack M (2010) Improved weight attainment of extremely low-gestational-age infants with bronchopulmonary dysplasia. J Perinat Off J Calif Perinat Assoc 30(2):103–111

    CAS  Google Scholar 

  130. Theile AR, Radmacher PG, Anschutz TW, Davis DW, Adamkin DH (2012) Nutritional strategies and growth in extremely low birth weight infants with bronchopulmonary dysplasia over the past 10 years. J Perinat Off J Calif Perinat Assoc 32(2):117–122

    CAS  Google Scholar 

  131. Atkinson SA (1994) Calcium and phosporus needs of premature infants. Nutr (Burbank, Los Angeles County, Calif) 10:66–68

    Google Scholar 

  132. Glasgow JF, Reid M (1977) 1 alpha-hydroxyvitamin D in nutritional rickets. Lancet 2(8032):302

    PubMed  CAS  Google Scholar 

  133. Koo W.W SJJ (1998) Osteopenia and rickets of prematurity. WB Saunders, Philadelphia

    Google Scholar 

  134. Stennett DJ, Gerwick WH, Egging PK, Christensen JM (1988) Precipitate analysis from an indwelling total parenteral nutrition catheter. JPEN 12(1):88–92

    CAS  Google Scholar 

  135. Hung YL, Chen PC, Jeng SF, Hsieh CJ, Peng SS, Yen RF et al (2011) Serial measurements of serum alkaline phosphatase for early prediction of osteopaenia in preterm infants. J Paediatr Child Health 47(3):134–139

    PubMed  Google Scholar 

  136. Koo WW, Steichen JJ (1998) Osteopenia and rickets of prematurity. In: Polin RA, W.W F (ed) Fetal and neonatal physiology. WB Saunders, Philadelphia p 2235–2249

    Google Scholar 

  137. Atkinson SAaRT (2005) Recommended reasonable range for parenteral and enteral nutritio for preterm infants during hospitalisation. Digital Educational Publishing, Cincinati

    Google Scholar 

  138. Schulzke SM, Trachsel D, Patole SK (2007) Physical activity programs for promoting bone mineralization and growth in preterm infants. Cochrane Database Syst Rev (2):CD005387

    PubMed  Google Scholar 

  139. Rigo J, Pieltain C, Salle B, Senterre J (2007) Enteral calcium, phosphate and vitamin D requirements and bone mineralization in preterm infants. Acta Paediatr 96(7):969–974

    PubMed  Google Scholar 

  140. Johnson DB, Cheney C, Monsen ER (1998) Nutrition and feeding in infants with bronchopulmonary dysplasia after initial hospital discharge: risk factors for growth failure. J Am Diet Assoc 98(6):649–656

    PubMed  CAS  Google Scholar 

  141. Allen J, Zwerdling R, Ehrenkranz R, Gaultier C, Geggel R, Greenough A et al (2003) Statement on the care of the child with chronic lung disease of infancy and childhood. Am J Resp Crit Care 168(3):356–396

    Google Scholar 

  142. Ogden CL, Kuczmarski RJ, Flegal KM, Mei Z, Guo S, Wei R et al (2002) Centers for disease control and prevention 2000 growth charts for the United States: improvements to the 1977 National Center for Health Statistics version. Pediatrics 109(1):45–60

    PubMed  Google Scholar 

  143. Singer L, Martin RJ, Hawkins SW, Benson-Szekely LJ, Yamashita TS, Carlo WA (1992) Oxygen desaturation complicates feeding in infants with bronchopulmonary dysplasia after discharge. Pediatrics 90(3):380–384

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Patole MD, DCH, FRACP, MSc, DrPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ofek Shlomai, N., Patole, S. (2013). Nutrition in Preterm Infants with Bronchopulmonary Dysplasia. In: Patole, S. (eds) Nutrition for the Preterm Neonate. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6812-3_21

Download citation

Publish with us

Policies and ethics