Skip to main content

Comparing Biological Networks: A Survey on Graph Classifying Techniques

  • Chapter
Systems Biology

Abstract

In order to compare biological networks numerous methods have been developed. Here, we give an overview of existing methods to compare biological networks meaningfully. Therefore we survey classical approaches of exact an inexact graph matching and discuss existing approaches to compare special types of biological networks. Moreover we review graph kernel-based methods and describe an approach based on structural network measures to classify large biological networks. The aim of this chapter is to provide a survey of techniques to compare biological networks for the interdisciplinary research community dealing with novel research questions in the field of systems biology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GED:

Graph Edit Distance

GEO:

Gene Expression Omnibus

GO:

Gene Ontology

PPI:

Protein Protein Interactions

QSAR:

Quantitative Structure-Activity Relationship

QSPR:

Quantitative Structure-Property Relationships

References

  1. Airola A, Pyysalo S, Björne J, Pahikkala T, Ginter F, Salakoski T (2008) A graph Kernel for protein-protein interaction extraction. In: Proceedings of the workshop on current trends in biomedical natural language processing, pp. 1–9. Association for, Computational Linguistics, 2008.

    Google Scholar 

  2. Airola A, Pyysalo S, Björne J, Pahikkala T, Ginter F, Salakoski T (2008) All-paths graph Kernel for protein-protein interaction extraction with evaluation of Cross-Corpus learning. BMC Bioinformatics 9(Suppl 11):S2

    Article  PubMed Central  PubMed  Google Scholar 

  3. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular biology of the cell. Garland Science, 5th edn

    Google Scholar 

  4. Altay G, Emmert Streib F (2010) Inferring the conservative causal core of gene regulatory networks. BMC Syst Biol 4(1):132

    Article  PubMed Central  PubMed  Google Scholar 

  5. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ambroise C, McLachlan GJ (2002) Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Nat Acad Sci USA 99(10):6562

    Google Scholar 

  7. Ay F, Dang M, Kahveci T (2012) Metabolic network alignment in large scale by network compression. BMC Bioinformatics 13(Suppl 3):S2

    PubMed Central  PubMed  Google Scholar 

  8. Ay F, Kahveci T (2010) SubMAP: aligning metabolic pathways with subnetwork mappings. In Research in computational molecular biology. Springer, New York, pp 15–30

    Google Scholar 

  9. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 206:509–512

    Google Scholar 

  10. Basak SC, Magnuson VR, Niemi GJ, Regal RR (1988) Determining structural similarity of chemicals using graph-theoretic indices. Discrete Appl Math 19(1–3):17–44

    Google Scholar 

  11. Bhattacharyya A (1943) On a measure of divergence between two statistical populations defined by their probability distributions. Bull Calcutta Mathl Soc 35:99–109

    Google Scholar 

  12. Bonchev D (1983) Information theoretic indices for characterization of chemical structures. Chemometrics research studies series. Research Studies Press

    Google Scholar 

  13. Bonchev D, Mekenyan O, Trinajstić N (1981) Isomer discrimination by topological information approach. J Comput Chem 2(2):127–148

    Article  CAS  Google Scholar 

  14. Bonchev D, Trinajstić N (1977) Information theory, distance matrix and molecular branching. J Chem Phys 67:4517–4533

    Article  CAS  Google Scholar 

  15. Borgwardt KM, Kriegel HP (2005) Shortest-Path Kernels on graphs. In Data mining, Fifth IEEE International Conference on. IEEE, p 8

    Google Scholar 

  16. Borgwardt KM, Kriegel HP, Vishwanathan SVN, Schraudolph NN (2007) Graph Kernels for disease outcome prediction from Protein-Protein interaction networks, vol 12. In: Proceedings of Pacific symposium on biocomputing (PSB), pp 4–15

    Google Scholar 

  17. Borgwardt KM, Ong CS, Schönauer S, Vishwanathan SVN, Smola AJ, Kriegel HP (2005) Protein function prediction via graph Kernels. Bioinformatics 21(suppl 1):i47–i56

    Article  CAS  PubMed  Google Scholar 

  18. Breiman L (2001) Random Forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  19. Bunke H (2000) Graph matching: theoretical foundations, algorithms, and applications. Proc Vis Interface 2000:82–88

    Google Scholar 

  20. Bunke H, Allermann G (1983) Inexact graph matching for structural pattern recognition. Pattern Recogn Lett 1(4):245–253

    Article  Google Scholar 

  21. Bunke H, Riesen K (2009) Graph edit distance-optimal and suboptimal algorithms with applications. Anal Complex Netw pp 113–143

    Google Scholar 

  22. Cantrell CD (2000) Modern mathematical methods for physicists and engineers. Cambridge University Press, Cambridge

    Google Scholar 

  23. Chan AHS (2010) Advances in industrial engineering and operations research. Lecture notes in electrical engineering. Springer, New York

    Google Scholar 

  24. Conte D, Foggia P, Sansone C, Vento M (2004) Thirty years of graph matching in pattern recognition. Int J Pattern Recogn Artif Intell 18(3):265–298

    Article  Google Scholar 

  25. Cordella LP, Foggia P, Sansone C, Vento M (1996) An efficient algorithm for the inexact matching of Arg Graphs using a contextual transformational model, vol 3. In: Proceedings of the 13th international conference on pattern recognition. IEEE, pp 180–184

    Google Scholar 

  26. Cordella LP, Foggia P, Sansone C, Vento M (2000) Fast graph matching for detecting CAD image components, vol 2. In: 15th international conference on pattern recognition. IEEE, pp 1034–1037

    Google Scholar 

  27. Cordella LP, Foggia P, Sansone C, Vento M (2001) An improved algorithm for matching large graphs. In: 3rd IAPR-TC15 workshop on graph-based representations in, pattern recognition, pp 149–159

    Google Scholar 

  28. Dankelmann P (2011) On the distance distribution of trees. Discrete Appl Math

    Google Scholar 

  29. Dehmer M, Barbarini N, Varmuza K, Graber A (2009) A large scale analysis of information-theoretic network complexity measures using chemical structures. PLoS ONE 4(12)

    Google Scholar 

  30. Dehmer M, Barbarini N, Varmuza K, Graber A (2010) Novel topological descriptors for analyzing biological networks. BMC Struct Biol 10(1):18

    Article  PubMed Central  PubMed  Google Scholar 

  31. Dehmer M, Emmert Streib F (2007) Structural similarity of directed universal hierarchical graphs: a low computational complexity approach. Appl Math Comput 194(1):7–20

    Article  Google Scholar 

  32. Dehmer M, Emmert Streib F, Tsoy YR, Varmuza K (2010) Quantum Frontiers of atoms and molecules, chapter quantifying structural complexity of graphs: information measures in mathematical. Nova, 2010

    Google Scholar 

  33. Dehmer M, Grabner M, Varmuza K (2012) Information indices with high discriminative power for graphs. PLoS ONE 7(2):e31214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Dehmer M, Mehler A (2007) A new method of measuring similarity for a special class of directed graphs. Tatra Mountains Math Publ 36:39–59

    Google Scholar 

  35. Dehmer M, Mowshowitz A (2011) A history of graph entropy measures. Inf Sci 181(1):57–78

    Article  Google Scholar 

  36. Dehmer M, Sivakumar L, Varmuza K (2012) Uniquely discriminating molecular structures using novel eigenvalue based descriptors. MATCH Commun Math Comput Chem 67(1):147–172

    CAS  Google Scholar 

  37. Dodge CW (2004) Euclidean geometry and transformations. Dover Publications, New York

    Google Scholar 

  38. Dreyfus SE (1969) An appraisal of some shortest-path algorithms. Oper Res, pp 395–412

    Google Scholar 

  39. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Emmert Streib F (2007) The Chronic Fatigue syndrome: a comparative pathway analysis. J Computl Biol 14(7):961–972

    Article  CAS  Google Scholar 

  41. Emmert Streib F, Dehmer M (May 2011) Networks for systems biology: conceptual connection of data and function. IET Syst Biol 5(3):185–207

    Article  CAS  PubMed  Google Scholar 

  42. Emmert Streib F, Dehmer M, Kilian J (2005) Classification of large graphs by a local tree decomposition. Proc DMIN 5:20–23

    Google Scholar 

  43. Emmert Streib F, Glazko GV (2010) Network biology: a direct approach to study biological function. Wiley Interdisciplinary Reviews. Systems biology and medicine, Dec 2010, pp 1–27

    Google Scholar 

  44. Eppstein D (1995). Subgraph Isomorphism in Planar Graphs and Related Problems. In Proceedings of the Sixth Annual ACM-SIAM symposium on discrete algorithms. Society for Industrial and, Applied Mathematics, pp. 632–640

    Google Scholar 

  45. Eshera MA, FU K (1984) A graph distance measure for image analysis. IEEE Trans Syst, Man, and Cybern 14(3):398–408

    Google Scholar 

  46. Eshera MA, Fu KS (1986) An image understanding system using attributed symbolic representation and inexact graph-matching. Pattern Anal Mach Intell IEEE Trans 5:604–618

    Article  Google Scholar 

  47. Feng J, Lurati L, Ouyang H, Robinson T, Wang Y, Yuan S, Young SS (2003) Predictive toxicology: benchmarking molecular descriptors and statistical methods. J Chem Inf Comput Sci 43(5):1463–1470

    Article  CAS  PubMed  Google Scholar 

  48. Flannick J, Novak A, Srinivasan BS, McAdams HH, Batzoglou S (2006) Graemlin: General and robust alignment of multiple large interaction networks. Genome Res 16(9):1169–1181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Gärtner T, Flach P, Wrobel S (2003) On graph Kernels: hardness results and efficient alternatives. Learn Theory Kernel Mach, pp 129–143

    Google Scholar 

  50. Guzmn Vargas L, Santilln M (2008) Comparative analysis of the transcription-factor gene regulatory networks of E. Coli and S. Cerevisiae. BMC Syst Biol 2:13

    Article  Google Scholar 

  51. Hansen K, Mika S, Schroeter T, Sutter A, Ter Laak A, Steger Hartmann T, Heinrich N, Muller KR (2009) Benchmark data set for in Silico prediction of Ames mutagenicity. J Chem Inf Comput Sci 49(9):2077–2081

    Article  CAS  Google Scholar 

  52. Harary F (1994) Graph theory. Perseus Books, Addison-Wesley, New York, Reading

    Google Scholar 

  53. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R et al (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32(Database issue):D258

    Google Scholar 

  54. Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107

    Article  Google Scholar 

  55. Helma C, Cramer T, Kramer S, De Raedt L (2004) Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds. J Chem Inf Comput Sci 44(4):1402–1411

    Article  CAS  PubMed  Google Scholar 

  56. Hood L, Heath JR, Phelps ME, Lin B (2004) Systems biology and new technologies enable predictive and preventative medicine. Science 306(5696):640

    Article  CAS  PubMed  Google Scholar 

  57. Horváth T (2005) Cyclic pattern Kernels revisited. Adv Knowl Discov Data Min, pp 139–140

    Google Scholar 

  58. Horváth T, Gärtner T, Wrobel S (2004) Cyclic pattern Kernels for predictive graph mining. In: Proceedings of the Tenth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 158–167

    Google Scholar 

  59. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabsi AL (Oct 2000) The large-scale organization of metabolic networks. Nature 407(6804):651–654

    Article  CAS  PubMed  Google Scholar 

  60. Kalaev M, Smoot M, Ideker T, Sharan R (2008) NetworkBLAST: comparative analysis of protein networks. Bioinformatics 24(4):594–596

    Article  CAS  PubMed  Google Scholar 

  61. Kashima H, Inokuchi A (2002) Kernels for graph classification, vol 2002. In: ICDM workshop on active mining, p 25

    Google Scholar 

  62. Kelley BP, Sharan R, Karp RM, Sittler T, Root DE, Stockwell BR, Ideker T (2003) Conserved pathways within Bacteria and Yeast as revealed by global protein network alignment. Sci STKE 100(20):11394

    CAS  Google Scholar 

  63. Kelley BP, Yuan B, Lewitter F, Sharan R, Stockwell BR, Ideker T (2004) PathBLAST: a tool for alignment of Protein interaction networks. Nucleic Acids Res 32(suppl 2):W83–W88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  CAS  PubMed  Google Scholar 

  65. Koyutürk M, Grama A, Szpankowski W (2005) Pairwise local alignment of Protein interaction networks guided by models of evolution. In: Research in computational molecular biology. Springer, New York, pp 995–995

    Google Scholar 

  66. Koyutürk M, Kim Y, Topkara U, Subramaniam S, Szpankowski W, Grama A (2006) Pairwise alignment of protein interaction networks. J Comput Biol 13(2):182–199

    Article  PubMed  Google Scholar 

  67. Krause EF (1973) Taxicab geometry. Math Teach 66(8):695–706

    Google Scholar 

  68. Kuchaiev O, Milenković T, Memišević V, Hayes W, Pržulj N (2010) Topological network alignment uncovers biological function and phylogeny. J Royal Soc Interf 7(50):1341–1354

    Article  Google Scholar 

  69. Kuchaiev O, Pržulj N (2011) Integrative network alignment reveals large regions of global network similarity in Yeast and Human. Bioinformatics 27(10):1390–1396

    Article  CAS  PubMed  Google Scholar 

  70. Kugler KG, Mueller LAJ, Graber A, Dehmer M (2011) Integrative network biology: graph prototyping for co-expression cancer networks. PLoS ONE 6(7):e22843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86

    Article  Google Scholar 

  72. Lance GN, Williams WT (1966) Computer programs for hierarchical polythetic classification (similarity analyses). Comput J 9(1):60–64

    Article  Google Scholar 

  73. Langfelder P, Horvath S (January 2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed Central  PubMed  Google Scholar 

  74. Larrosa J, Valiente G (2002) Constraint satisfaction algorithms for graph pattern matching. Math Struct Comput Sci 12(4):403–422

    Article  Google Scholar 

  75. Liao CS, Lu K, Baym M, Singh R, Berger B (2009) IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics 25(12):i253–i258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Liu H, Motoda H (1998) Feature selection for knowledge discovery and data mining. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  77. Mahé P, Vert JP (2009) Graph Kernels based on tree patterns for molecules. Mach Learn 75(1):3–35

    Article  Google Scholar 

  78. Mazurie A, Bonchev D, Schwikowski B, Buck GA (2008) Phylogenetic distances are encoded in networks of interacting pathways. Bioinformatics 24(22):2579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. McKay BD Nauty. http://cs.anu.edu.au/ bdm/nauty/

  80. McKay BD (1981) Practical graph isomorphism. Congressus Numerantium 30:45–87

    Google Scholar 

  81. Menchetti S, Costa F, Frasconi P (2005) Weighted decomposition Kernels. In: Proceedings of the 22nd international conference on machine learning. ACM, pp 585–592

    Google Scholar 

  82. Messmer BT, Bunke H (1999) A decision tree approach to graph and subgraph isomorphism detection. Pattern Recogn 32(12):1979–1998

    Article  Google Scholar 

  83. Messmer BT, Bunke H (2000) Efficient subgraph isomorphism detection: a decomposition approach. IEEE Trans Knowl Data Eng 12(2):307–323

    Article  Google Scholar 

  84. Meyer PE, Kontos K, Lafitte F, Bontempi G (2007) Information-theoretic inference of large transcriptional regulatory networks. EURASIP J Bioinform Syst Biol 8–8:2007

    Google Scholar 

  85. Michoel T, De Smet R, Joshi A, Van de Peer Y, Marchal K (2009) Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks. BMC Syst Biol 3(1):49

    Article  PubMed Central  PubMed  Google Scholar 

  86. Milenkoviæ T, Pržulj N (2008) Uncovering biological network function via Graphlet degree signatures. Cancer Inform 6:257

    PubMed Central  Google Scholar 

  87. Mowshowitz A (1968) Entropy and the complexity of the graphs I: an index of the relative complexity of a graph. Bull Math Biophys 30:175204

    Google Scholar 

  88. Mueller LAJ, Kugler KG, Dander A, Graber A, Dehmer M (2010) Network-based approach to classify disease stages of prostate cancer using quantitative network measures, vol I. Conference on bioinformatics and computational biology (BIOCOMP’10), Las Vegas/USA, pp 55–61

    Google Scholar 

  89. Mueller LAJ, Kugler KG, Dander A, Graber A, Dehmer M (2011) QuACN: an R package for analyzing complex biological networks quantitatively. Bioinformatics 27(1):140

    Article  CAS  PubMed  Google Scholar 

  90. Mueller LAJ, Kugler KG, Graber A, Emmert Streib F, Dehmer M (2011) Structural measures for network biology using QuACN. BMC Bioinformatics 12(1):492

    Article  PubMed Central  PubMed  Google Scholar 

  91. Mueller LAJ, Kugler KG, Netzer M, Graber A, Dehmer M (2011) A network-based approach to classify the three domains of life. Biology Direct 6(1):53

    Article  PubMed Central  PubMed  Google Scholar 

  92. Neuhaus M, Riesen K, Bunke H (2006) Fast suboptimal algorithms for the computation of graph edit distance. In: Structural, syntactic, and statistical, pattern recognition, pp 163–172

    Google Scholar 

  93. Palsson B (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, Cambridge

    Google Scholar 

  94. Parkinson H, Kapushesky M, Kolesnikov N, Rustici G, Shojatalab M, Abeygunawardena N, Berube H, Dylag M, Emam I, Farne A et al (2009) ArrayExpress update from an archive of functional genomics experiments to the Atlas of gene expression. Nucleic Acids Res 37(suppl 1):D868–D872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Passerini F, Severini S (2009) Quantifying complexity in networks: the von Neumann entropy. Int J Agent Technol Syst (IJATS) 1(4):58–67

    Article  Google Scholar 

  96. Poston KL, Eidelberg D (2009) Network biomarkers for the diagnosis and treatment of movement disorders. Neurobiol Dis 35(2):141–147

    Article  CAS  PubMed  Google Scholar 

  97. Pržulj N (2007) Biological network comparison using graphlet degree distribution. Bioinformatics 23(2):e177–e183

    Article  PubMed  Google Scholar 

  98. Ralaivola L, Swamidass SJ, Saigo H, Baldi P (2005) Graph kernels for chemical informatics. Neural Networks 18(8):1093–1110

    Article  PubMed  Google Scholar 

  99. Riesen K, Bunke H (2009) Approximate graph edit distance computation by means of bipartite graph matching. Image Vis Comput 27(7):950–959

    Article  Google Scholar 

  100. Ruan J, Dean AK, Zhang W (2010) A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Syst Biol 4(1):8

    Article  PubMed Central  PubMed  Google Scholar 

  101. Rudolf M (2000) Utilizing constraint satisfaction techniques for efficient graph pattern matching. Theory Appl Graph Transform, pp 381–394

    Google Scholar 

  102. Rupp M, Schneider G (2010) Graph Kernels for molecular similarity. Mol Inform 29(4):266–273

    Article  CAS  Google Scholar 

  103. Rupp M, Schneider P, Schneider G (2009) Distance phenomena in high-dimensional chemical descriptor spaces: consequences for similarity-based approaches. J Comput Chem 30(14):2285–2296

    CAS  PubMed  Google Scholar 

  104. Sanfeliu A, King Sun F (1983) A distance measure between attributed relational graphs for pattern recognition. IEEE Trans Syst Man Cybern 13(3):353–362

    Article  Google Scholar 

  105. Schölkopf B, Tsuda K, Vert JP (2004) Kernel methods in computational biology. Computational molecular biology. MIT Press, Cambridge

    Google Scholar 

  106. Scsibrany H, Karlovits M, Demuth W, Müller F, Varmuza K (2003) Clustering and similarity of chemical structures represented by binary substructure descriptors. Chemometr Intell Lab Syst 67(2):95–108

    Article  CAS  Google Scholar 

  107. Serratosa F, Alquézar R, Sanfeliu A (2003) Function-described graphs for modelling objects represented by sets of attributed graphs. Pattern Recogn 36(3):781–798

    Article  Google Scholar 

  108. Shapiro LG, Haralick RM (1981) Structural descriptions and inexact graph matching. IEEE Trans Pattern Anal Mach Intell 3:504–519

    Article  CAS  PubMed  Google Scholar 

  109. Sharan R, Ideker T (2006) Modeling cellular machinery through biological network comparison. Nat Biotechnol 24(4):427–433

    Article  CAS  PubMed  Google Scholar 

  110. Sharan R, Suthram S, Kelley RM, Kuhn T, McCuine S, Uetz P, Sittler T, Karp RM, Ideker T (2005) Conserved patterns of Protein interaction in multiple species. Proc Natl Acad Sci USA 102(6):1974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Shervashidze N, Borgwardt KM (2009) Fast subtree Kernels on graphs. Adv Neural Inf Proc Syst 22:1660–1668

    Google Scholar 

  112. Shervashidze N, Vishwanathan SVN, Petri T, Mehlhorn K, Borgwardt K (2009) Efficient graphlet Kernels for large graph comparison. In: Proceedings of the international workshop on artificial intelligence and statistics. Society for Artificial Intelligence and, Statistics, 2009

    Google Scholar 

  113. Shih YK, Parthasarathy S (2012) Scalable global alignment for multiple biological networks. BMC Bioinformatics 13(Suppl 3):S11

    Article  PubMed Central  PubMed  Google Scholar 

  114. Singh R, Xu J, Berger B (2007) Pairwise global alignment of Protein interaction networks by matching neighborhood topology. In: Research in computational molecular biology. Springer, New York, pp 16–31

    Google Scholar 

  115. Singh R, Xu J, Berger B (2008) Global alignment of multiple Protein interaction networks with application to functional orthology detection. Proc Natl Acad Sci 105(35):12763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Smialowski P, Frishman D, Kramer S (2010) Pitfalls of supervised feature selection. Bioinformatics 26(3):440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Sobik F (1982) Graphmetriken und Klassifikation strukturierter Objekte. ZKI-Inf, Akad Wiss DDR 2:63–122

    Google Scholar 

  118. Todeschini R, Mannhold R (2002) Handbook of molecular descriptors. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  119. Tsai WH, Fu KS (1979) Error-correcting isomorphisms of attributed relational graphs for pattern analysis. IEEE Trans Syst, Man Cybern 9(12):757–768

    Article  Google Scholar 

  120. Tsai WH, Fu KS (1983) Subgraph error-correcting isomorphisms for syntactic pattern recognition. IEEE Trans Syst, Man Cybern 13(1):48–62

    Article  Google Scholar 

  121. Ullmann JR (1976) An algorithm for subgraph isomorphism. J ACM (JACM) 23(1):31–42

    Article  Google Scholar 

  122. Vapnik VN (2000) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  123. Wang J, Provan G (2009) Characterizing the structural complexity of real-world complex networks. Complex Sci, pp 1178–1189

    Google Scholar 

  124. Watts DJ, Strogatz SH (1998) Collective dynamics of ’Small-world’ networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  125. Wong EK (1990) Three-dimensional object recognition by attributed graphs. Syntactic Struct Pattern Recogn Theory Appl, pp 381–414

    Google Scholar 

  126. Xia K, Fu Z, Hou L, Han JDJ (2008) Impacts of Protein-Protein interaction domains on organism and network complexity. Genome Res 18(9):1500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Zaslavskiy M, Bach F, Vert JP (2009) Global alignment of Protein-Protein interaction networks by graph matching methods. Bioinformatics 25(12):i259–1267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Zelinka A (1975) On a certain distance between isomorphism classes of graphs. Čas Pěst Mat 100:371375

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Tiroler Wissenschaftsfonds and the Standortagentur Tirol (formerly Tiroler Zukunftsstiftung).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Dehmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mueller, L.A.J., Dehmer, M., Emmert-Streib, F. (2013). Comparing Biological Networks: A Survey on Graph Classifying Techniques. In: Prokop, A., Csukás, B. (eds) Systems Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6803-1_2

Download citation

Publish with us

Policies and ethics