Skip to main content

Design of a Poly-SiGe Piezoresistive Pressure Sensor

  • Chapter
  • First Online:
Poly-SiGe for MEMS-above-CMOS Sensors

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 44))

  • 1271 Accesses

Abstract

In this chapter, an extensive analysis, based on FE (Finite Element) simulations, on the structural design and optimisation of poly-SiGe based piezoresistive pressure sensors is presented. The considered pressure sensors consist of a deformable poly-SiGe membrane, fully clamped at its edges, and four poly-SiGe piezoresistors placed on top following a Wheatstone bridge configuration. Finite element simulations are used together with the experimentally obtained piezoresistive coefficients for poly-SiGe (Chap. 2) to optimize the sensor design parameters for enhanced sensitivity and linearity. The design parameters include the membrane area and shape and the location, shape and dimensions of the piezoresistors. The chapter begins by introducing the working principle of piezoresistive pressure sensors and their governing equations. The most important performance parameters for such sensors are also listed. The impact of the aforementioned design parameters on sensor performance is then evaluated, paying special attention to sensor sensitivity and linearity. Finally, two membrane shapes (square and rectangular), four membrane areas (\(200\times 200\), \(250\times 250\), \(300\times 300\) and \(350\times 175\,\upmu \) m\(^{2}\)) and six different piezoresistor designs are included in the layout (see Appendix A).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Hoffman, Applying the Wheatston bridge circuit, http://www.hbm.com.pl/pdf/w1569.pdf

  2. S.M. Sze, Semiconductor Sensors (Wiley, New York, 1994)

    Google Scholar 

  3. C. Pramanik, H. Saha, V. Gangopadhyay, Design optimization for a high performance silicon MEMS piezoresistive pressure sensor for biomedical applications. J. Micromech. Microeng. 16, 2060–2066 (2006)

    Article  ADS  Google Scholar 

  4. H.-S. Hsieh, H.-C. Chang, C.-F. Hu, C.-P. Hsu, W. Fang, Method for sensitivity improvement and optimal design of a piezoresistive pressure sensor, in Proceedings of the 9th IEEE Sensors Conference, pp. 1799–1802, 2010

    Google Scholar 

  5. K.N. Bhat, Silicon micromachined pressure sensors. J Indian Inst. Sci. 87(1), 115–131 (2007)

    Google Scholar 

  6. P. Gonzalez, S. Severi, S. Lenci, P. Merken, A. Witvrouw, K. de Meyer, Evaluation of the piezoresistivity and 1/f noise of polycrystalline SiGe for MEMS sensors applications, in Proceedings of the Eurosensors XXII, pp. 881–884, 2008

    Google Scholar 

  7. S. Marco, J. Samitier, O. Ruiz, J.R. Morante, Analysis of nonlinearity in high sensitivity piezoresistive pressure sensors. Sens. Actuators A 37–38, 790–795 (1993)

    Google Scholar 

  8. S. Marco, J. Samitier, O. Ruiz, J.R. Morante, J. Esteve, High-performance piezoresistive pressure sensors for biomedical applications using very thin structured membranes. Meas. Sci. Technol. 7, 1195–1203 (1996)

    Article  ADS  Google Scholar 

  9. O. Tabata, K. Kawahata, S. Sugiyama, I. Igarashi, Mechanical property measurements of thin films using load-deflection of composite rectangular membrane, in Proceedings of the MEMS 1989, pp. 152–156.

    Google Scholar 

  10. S.D. Senturia, Microsystems Design (Kluwer Academic Publisher, Norwell, 2000)

    Google Scholar 

  11. K. Matsuda, K. Suzuki, K. Yamamura, Y. Kanda, Nonlinear piezoresistance effects in silicon. J. Appl. Phy. 73(4), 1938–1947 (1993)

    Article  Google Scholar 

  12. K. Yamada, M. Nishihara, S. Shimada, M. Tanabe, M. Shimazoe, Y. Matsuoka, Nonlinearity of the piezoresistance effect of p-type silicon diffused layers. IEEE Trans. Electron Dev. 29(1), 71–77 (1982)

    Article  Google Scholar 

  13. V.A. Gridchin, Nonlinearity of the piezoresistive effect in polycrystalline silicon films. Semiconductors 38(2), 175 (2004)

    Article  ADS  Google Scholar 

  14. C.A. Sciammarella, F.M. Sciammarella, Experimental Mechanics of Solids (Wiley, Chichester, 2012)

    Google Scholar 

  15. S.-C. Kim, K.D. Wise, Temperature sensitivity in silicon piezoresistive pressure transducers. IEEE Trans. Electron Dev. 30(7), 802–810 (1983)

    Article  Google Scholar 

  16. V.A. Gridchin, V.M. Lubimsky, M.P. Sarina, Piezoresistive properties of polysilicon films. Sensors and Actuators A 49, 67–72 (1995)

    Article  Google Scholar 

  17. R. Hull, Properties of Crystalline Silicon (INSPEC: The Institution of Electrical Engineers, London, 1999)

    Google Scholar 

  18. Multiphysics Modelling and Simulation Software Version 4.0, http://www.comsol.com

  19. R. Modlinsky, A. Witvrouw, A. Verbist, R. Puers and I. De Wolf, Mechanical characterization of poly-SiGe layers for CMOS-MEMS integrated application, J. Micromech. Microeng. 20(1) 015014 (2010)

    Google Scholar 

  20. L. Lin, W. Yun, Design, optimization and fabrication of surface micromachined pressure sensors. Mechatronics 8, 505–519 (1998)

    Article  Google Scholar 

  21. L. Lin, H.-C. Chu, Y.-W. Lu, A simulation program for the sensitivity and linearity of piezoresistive pressure sensors. J. Microelectromech. Syst. 8(4), 514–522 (1999)

    Article  Google Scholar 

  22. S. Chen, M.-Q. Zhu, B.-H. Ma, W.-Z Yua, Design and optimization of a micro piezoresistive pressure sensor, in Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 351–356, 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar González Ruiz .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

González Ruiz, P., De Meyer, K., Witvrouw, A. (2014). Design of a Poly-SiGe Piezoresistive Pressure Sensor. In: Poly-SiGe for MEMS-above-CMOS Sensors. Springer Series in Advanced Microelectronics, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6799-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6799-7_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6798-0

  • Online ISBN: 978-94-007-6799-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics