Skip to main content

Bacterial Cell Stress Protein ClpP: A Novel Antibiotic Target

  • Chapter
  • First Online:
Moonlighting Cell Stress Proteins in Microbial Infections

Part of the book series: Heat Shock Proteins ((HESP,volume 7))

Abstract

Clp proteases play important roles in maintaining the protein homeostasis in bacterial cells, particularly under stress conditions. On the one hand they perform central functions in general protein quality control by degrading mis-translated, denatured or otherwise malfunctioning proteins. On the other hand, they direct cellular differentiation and development programs by temporally and spatially precise degradation of key regulatory proteins. On top of their already diverse functions in the physiological context, an additional role was discovered over the last years for this class of protein, namely to serve as a target for antibiotic action. Especially the conserved proteolytic core component of the protease machinery, designated ClpP, is important here. ClpP is capable of killing bacteria via uncontrolled proteolysis after deregulation by a potent class of novel antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexopoulos JA, Guarne A, Ortega J (2012) ClpP: a structurally dynamic protease regulated by AAA+ proteins. J Struct Biol 179:202–210

    Article  PubMed  CAS  Google Scholar 

  • Baker TA, Sauer RT (2012) ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim Biophys Acta 1823:15–28

    Article  PubMed  CAS  Google Scholar 

  • Brötz-Oesterhelt H, Beyer D, Kroll HP, Endermann R, Ladel C, Schroeder W, Hinzen B, Raddatz S, Paulsen H, Henninger K, Bandow JE, Sahl HG, Labischinski H (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11:1082–1087

    Article  PubMed  Google Scholar 

  • Flynn JM, Neher SB, Kim YI, Sauer RT, Baker TA (2003) Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 11:671–683

    Article  PubMed  CAS  Google Scholar 

  • Flynn JM, Levchenko I, Sauer RT, Baker TA (2004) Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev 18:2292–2301

    Article  PubMed  CAS  Google Scholar 

  • Geiger SR, Böttcher T, Sieber SA, Cramer P (2011) A conformational switch underlies ClpP protease function. Angew Chem Int Ed Engl 50:5749–5752

    Article  CAS  Google Scholar 

  • Gominet M, Seghezzi N, Mazodier P (2011) Acyl depsipeptide (ADEP) resistance in Streptomyces. Microbiology 157:2226–2234

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S, Roche E, Zhou Y, Sauer RT (1998) The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12:1338–1347

    Article  PubMed  CAS  Google Scholar 

  • Gribun A, Kimber MS, Ching R, Sprangers R, Fiebig KM, Houry WA (2005) The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation. J Biol Chem 280:16185–16196

    Article  PubMed  CAS  Google Scholar 

  • Hinzen B, Raddatz S, Paulsen H, Lampe T, Schumacher A, Häbich D, Hellwig V, Benet-Buchholz J, Endermann R, Labischinski H, Brötz-Oesterhelt H (2006) Medicinal chemistry optimization of acyldepsipeptides of the enopeptin class antibiotics. ChemMedChem 1:689–693

    Article  PubMed  CAS  Google Scholar 

  • Ingvarsson H, Mate MJ, Hogbom M, Portnoi D, Benaroudj N, Alzari PM, Ortiz-Lombardia M, Unge T (2007) Insights into the inter-ring plasticity of caseinolytic proteases from the X-ray structure of Mycobacterium tuberculosis ClpP1. Acta Crystallogr D: Biol Crystallogr 63:249–259

    Article  CAS  Google Scholar 

  • Jenal U, Fuchs T (1998) An essential protease involved in bacterial cell-cycle control. EMBO J 17:5658–5669

    Article  PubMed  CAS  Google Scholar 

  • Kang SG, Maurizi MR, Thompson M, Mueser T, Ahvazi B (2004) Crystallography and mutagenesis point to an essential role for the N-terminus of human mitochondrial ClpP. J Struct Biol 148:338–352

    Article  PubMed  CAS  Google Scholar 

  • Kim DY, Kim KK (2003) Crystal structure of ClpX molecular chaperone from Helicobacter pylori. J Biol Chem 278:50664–50670

    Article  PubMed  CAS  Google Scholar 

  • Kimber MS, Yu AY, Borg M, Leung E, Chan HS, Houry WA (2010) Structural and theoretical studies indicate that the cylindrical protease ClpP samples extended and compact conformations. Structure 18:798–808

    Article  PubMed  CAS  Google Scholar 

  • Kirstein J, Hoffmann A, Lilie H, Schmidt R, RĂĽbsamen-Waigmann H, Brötz-Oesterhelt H, Mogk A, Turgay K (2009a) The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol Med 1:37–49

    Article  PubMed  CAS  Google Scholar 

  • Kirstein J, Moliere N, Dougan DA, Turgay K (2009b) Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases. Nat Rev Microbiol 7:589–599

    Article  PubMed  CAS  Google Scholar 

  • Lee BG, Park EY, Jeon H, Sung KH, Paulsen H, RĂĽbsamen-Schaeff H, Brötz-Oesterhelt H, Song HK (2010) Structures of ClpP in complex with a novel class of antibiotics reveal its activation mechanism. Nat Struct Mol Biol 17:471–478

    Article  PubMed  CAS  Google Scholar 

  • Lee BG, Kim MK, Song HK (2011) Structural insights into the conformational diversity of ClpP from Bacillus subtilis. Mol Cells 32:589–595

    Article  PubMed  CAS  Google Scholar 

  • Leung E, Datti A, Cossette M, Goodreid J, McCaw SE, Mah M, Nakhamchik A, Ogata K, El BM, Cheng YQ, Wodak SJ, Eger BT, Pai EF, Liu J, Gray-Owen S, Batey RA, Houry WA (2011) Activators of cylindrical proteases as antimicrobials: identification and development of small molecule activators of ClpP protease. Chem Biol 18:1167–1178

    Article  PubMed  CAS  Google Scholar 

  • Li DH, Chung YS, Gloyd M, Joseph E, Ghirlando R, Wright GD, Cheng YQ, Maurizi MR, Guarne A, Ortega J (2010) Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: a model for the ClpX/ClpA-bound state of ClpP. Chem Biol 17:959–969

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Chan M, Sim TS (2009) Atypical caseinolytic protease homolog from Plasmodium falciparum possesses unusual substrate preference and a functional nuclear localization signal. Parasitol Res 105:1715–1722

    Article  PubMed  Google Scholar 

  • Maupin-Furlow J (2012) Proteasomes and protein conjugation across domains of life. Nat Rev Microbiol 10:100–111

    CAS  Google Scholar 

  • Michel KH, Kastner RE (1985) A54556 antibiotics and process for production thereof. US patent 4,492,650

    Google Scholar 

  • Msadek T, Dartois V, Kunst F, Herbaud ML, Denizot F, Rapoport G (1998) ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol 27:899–914

    Article  PubMed  CAS  Google Scholar 

  • Neher SB, Flynn JM, Sauer RT, Baker TA (2003) Latent ClpX-recognition signals ensure LexA destruction after DNA damage. Genes Dev 17:1084–1089

    Article  PubMed  CAS  Google Scholar 

  • Neher SB, Villen J, Oakes EC, Bakalarski CE, Sauer RT, Gygi SP, Baker TA (2006) Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon. Mol Cell 22:193–204

    Article  PubMed  CAS  Google Scholar 

  • Ollinger J, O’Malley T, Kesicki EA, Odingo J, Parish T (2012) Validation of the essential ClpP protease in Mycobacterium tuberculosis as a novel drug target. J Bacteriol 194:663–668

    Article  PubMed  CAS  Google Scholar 

  • Peltier JB, Ripoll DR, Friso G, Rudella A, Cai Y, Ytterberg J, Giacomelli L, Pillardy J, van Wijk KJ (2004) Clp protease complexes from photosynthetic and non-photosynthetic plastids and mitochondria of plants, their predicted three-dimensional structures, and functional implications. J Biol Chem 279:4768–4781

    Article  PubMed  CAS  Google Scholar 

  • Pummi T, Leskela S, Wahlstrom E, Gerth U, Tjalsma H, Hecker M, Sarvas M, Kontinen VP (2002) ClpXP protease regulates the signal peptide cleavage of secretory preproteins in Bacillus subtilis with a mechanism distinct from that of the Ecs ABC transporter. J Bacteriol 184:1010–1018

    Article  PubMed  CAS  Google Scholar 

  • Raju RM, Unnikrishnan M, Rubin DH, Krishnamoorthy V, Kandror O, Akopian TN, Goldberg AL, Rubin EJ (2012) Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection. PLoS Pathog 8:e1002511

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran R, Hartmann C, Song HK, Huber R, Bochtler M (2002) Functional interactions of HslV (ClpQ) with the ATPase HslU (ClpY). Proc Natl Acad Sci USA 99:7396–7401

    Article  PubMed  CAS  Google Scholar 

  • Rathore S, Sinha D, Asad M, Böttcher T, Afrin F, Chauhan VS, Gupta D, Sieber SA, Mohmmed A (2010) A cyanobacterial serine protease of Plasmodium falciparum is targeted to the apicoplast and plays an important role in its growth and development. Mol Microbiol 77:873–890

    CAS  Google Scholar 

  • Sass P, Josten M, Famulla K, Schiffer G, Sahl HG, Hamoen L, Brötz-Oesterhelt H (2011) Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proc Natl Acad Sci USA 108:17474–17479

    Article  PubMed  CAS  Google Scholar 

  • Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84

    Article  PubMed  CAS  Google Scholar 

  • Schmitt EK, Riwanto M, Sambandamurthy V, Roggo S, Miault C, Zwingelstein C, Krastel P, Noble C, Beer D, Rao SP, Au M, Niyomrattanakit P, Lim V, Zheng J, Jeffery D, Pethe K, Camacho LR (2011) The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angew Chem Int Ed Engl 50:5889–5891

    Article  PubMed  CAS  Google Scholar 

  • Socha AM, Tan NY, LaPlante KL, Sello JK (2010) Diversity-oriented synthesis of cyclic acyldepsipeptides leads to the discovery of a potent antibacterial agent. Bioorg Med Chem 18:7193–7202

    Article  PubMed  CAS  Google Scholar 

  • Thompson MW, Maurizi MR (1994) Activity and specificity of Escherichia coli ClpAP protease in cleaving model peptide substrates. J Biol Chem 269:18201–18208

    PubMed  CAS  Google Scholar 

  • Turgay K, Hahn J, Burghoorn J, Dubnau D (1998) Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J 17:6730–6738

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Hartling JA, Flanagan JM (1997) The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis. Cell 91:447–456

    Article  PubMed  CAS  Google Scholar 

  • Yu AY, Houry WA (2007) ClpP: a distinctive family of cylindrical energy-dependent serine proteases. FEBS Lett 581:3749–3757

    Article  PubMed  CAS  Google Scholar 

  • Zeiler E, Braun N, Böttcher T, KastenmĂĽller A, Weinkauf S, Sieber SA (2011) Vibralactone as a tool to study the activity and structure of the ClpP1P2 complex from Listeria monocytogenes. Angew Chem Int Ed Engl 50:11001–11004

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Brötz-Oesterhelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brötz-Oesterhelt, H., Sass, P. (2013). Bacterial Cell Stress Protein ClpP: A Novel Antibiotic Target. In: Henderson, B. (eds) Moonlighting Cell Stress Proteins in Microbial Infections. Heat Shock Proteins, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6787-4_24

Download citation

Publish with us

Policies and ethics