Skip to main content

A Brief Introduction to the Eukaryotic Cell Stress Proteins

  • Chapter
  • First Online:
  • 1057 Accesses

Part of the book series: Heat Shock Proteins ((HESP,volume 7))

Abstract

The discovery of the heat shock response in Drosophila in the early 1960s led on to the elucidation of the cell stress response and the discovery of proteins of molecular mass of 10, 20, 40, 60, 70 and 90 kDa, amongst others, and which were termed the heat shock proteins. Beginning in the late 1970s, and continuing up to the present day, has been the identification of these heat shock/cell stress proteins and their mechanism of action, both as protein-folding proteins and as proteins with a range of other functions in various compartments of the cell and in the intercellular space. In addition to functioning as molecular chaperones, the heat shock/cell stress proteins can also function as cell surface receptors and as intercellular signalling molecules. This growing diversity of the biological functions of the cell stress proteins reveals that these proteins play roles in all aspects of cellular physiology and that these functions also contribute to whole body homeostatic control and to the dark side of human pathophysiology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alder GM, Austen BM, Bashford CL, Mehlert A, Pasternak CA (1990) Heat shock proteins induce pores in membranes. Biosci Rep 10:509–518

    Article  PubMed  CAS  Google Scholar 

  • Ananthan J, Goldberg AL, Voellmy R (1986) Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522–524

    Article  PubMed  CAS  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  PubMed  CAS  Google Scholar 

  • Aoyagi S, Archer TK (2005) Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol 15:565–567

    Article  PubMed  CAS  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    Article  PubMed  CAS  Google Scholar 

  • Bardwell JCA, Craig EA (1984) Major heat shock gene of Drosophila and Escherichia coli heat-inducible DNA gene are homologous. Proc Natl Acad Sci U S A 81:848–852

    Article  PubMed  CAS  Google Scholar 

  • Bernard C (1961) An introduction to the study of experimental medicine (trans: Greene HC). Collier Books, New York

    Google Scholar 

  • Björk JK, Sistonen L (2010) Regulation of the members of the mammalian heat shock factor family. FEBS J 277:4126–4139

    Article  PubMed  CAS  Google Scholar 

  • Bocharov AV, Vishnyakova TG, Baranova IN, Remaley AT, Patterson AP, Eggerman TL (2000) Heat shock protein 60 is a high-affinity high-density lipoprotein binding protein. Biochem Biophys Res Commun 277:228–235

    Article  PubMed  CAS  Google Scholar 

  • Broadley SA, Vanags D, Williams B, Johnson B, Feeney D, Griffiths L, Shakib S, Brown G, Coulthard A, Mullins P, Kneebone C (2009) Results of a phase IIa clinical trial of an anti-inflammatory molecule, chaperonin 10, in multiple sclerosis. Mult Scler 15:329–336

    Article  PubMed  CAS  Google Scholar 

  • Buchberger A, Bukau B, Sommer T (2010) Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol Cell 40:238–252

    Article  PubMed  CAS  Google Scholar 

  • Calderwood SK, Murshid A, Prince T (2009) The shock of aging: molecular chaperones and the heat shock response in longevity and aging – a mini-review. Gerontology 55:55–58

    Article  CAS  Google Scholar 

  • Cannon WB (1932) The wisdom of the body. WW Norton & Co, New York

    Google Scholar 

  • Cavanagh AC, Morton H (1994) The purification of early-pregnancy factor to homogeneity from human platelets and identification as chaperonin 10. Eur J Biochem 222:551–560

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti A, Chen AW, Varner JD (2011) A review of the mammalian unfolded protein response. Biotechnol Bioeng 108:2777–2793

    Article  PubMed  CAS  Google Scholar 

  • Chen JS, Hsu YM, Chen CC, Chen LL, Lee CC, Huang TS (2010) Secreted heat shock protein 90alpha induces colorectal cancer cell invasion through CD91/LRP-1 and NF-kappaB-mediated integrin alphaV expression. J Biol Chem 285:25458–25466

    Article  PubMed  CAS  Google Scholar 

  • Cheng CF, Sahu D, Tsen F, Zhao Z, Fan J, Kim R, Wang X, O’Brien K, Li Y, Kuang Y, Chen M, Woodley DT, Li W (2011) A fragment of secreted Hsp90α carries properties that enable it to accelerate effectively both acute and diabetic wound healing in mice. J Clin Invest 121:4348–4361

    Article  PubMed  CAS  Google Scholar 

  • Christensen JH, Nielsen MN, Hansen J, Füchtbauer A, Füchtbauer EM, West M, Corydon TJ, Gregersen N, Bross P (2010) Inactivation of the hereditary spastic paraplegia-associated Hspd1 gene encoding the Hsp60 chaperone results in early embryonic lethality in mice. Cell Stress Chaperones 15:851–863

    Article  PubMed  CAS  Google Scholar 

  • Corrao S, Campanella C, Anzalone R, Farina F, Zummo G, Conway de Macario E, Macario AJ, Cappello F, La Rocca G (2010) Human Hsp10 and Early Pregnancy Factor (EPF) and their relationship and involvement in cancer and immunity: current knowledge and perspectives. Life Sci 86:145–152

    Article  PubMed  CAS  Google Scholar 

  • Corrigall VM, Bodman-Smith MD, Fife MS, Canas B, Myers LK, Wooley P, Soh C, Staines NA, Pappin DJ, Berlo SE, van Eden W, van Der Zee R, Lanchbury JS, Panayi GS (2001) The human endoplasmic reticulum molecular chaperone BiP is an autoantigen for rheumatoid arthritis and prevents the induction of experimental arthritis. J Immunol 166:1492–1498

    PubMed  CAS  Google Scholar 

  • Corrigall VM, Bodman-Smith MD, Brunst M, Cornell H, Panayi GS (2008) Inhibition of antigen-presenting cell function and stimulation of human peripheral blood mononuclear cells to express an antiinflammatory cytokine profile by the stress protein BiP: relevance to the treatment of inflammatory arthritis. Arthritis Rheum 50:1164–1171

    Article  CAS  Google Scholar 

  • De Maio A, Santoro MG, Tanguay RM, Hightower LE (2012) Ferruccio Ritossa’s scientific legacy 50 years after his discovery of the heat shock response: a new view of biology, a new society, and a new journal. Cell Stress Chaperones 17:139–143

    Article  PubMed  CAS  Google Scholar 

  • Deture M, Hicks C, Petrucelli L (2010) Targeting heat shock proteins in tauopathies. Curr Alzheimer Res 7:677–684

    Article  PubMed  CAS  Google Scholar 

  • Dingwall C, Laskey RA (1990) Nucleoplasmin: the archetypal molecular chaperone. Semin Cell Biol 1:11–17

    PubMed  CAS  Google Scholar 

  • Dolinski K, Muir S, Cardenas M, Heitman J (1997) All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 94:13093–13098

    Article  PubMed  CAS  Google Scholar 

  • Ebong IO, Morgner N, Zhou M, Saraiva MA, Daturpalli S, Jackson SE, Robinson CV (2011) Heterogeneity and dynamics in the assembly of the heat shock protein 90 chaperone complexes. Proc Natl Acad Sci U S A 108:17939–17944

    Article  PubMed  CAS  Google Scholar 

  • Edlich F, Fischer G (2006) Pharmacological targeting of catalyzed protein folding: the example of peptide bond cis/trans isomerases. Handb Exp Pharmacol 172:359–404

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ (1990) Molecular chaperones: the plant connection. Science 250:954–959

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ (1993) The general concept of molecular chaperones. Philos Trans R Soc Lond B Biol Sci 339:257–261

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ (2003) Protein folding: importance of the Anfinsen cage. Curr Biol 13:R881–R883

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ, Hemmingsen SM (1989) Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem Sci 14:339–342

    Article  PubMed  CAS  Google Scholar 

  • Eustace BK, Sakurai T, Stewart JK, Yimlamai D, Unger C, Zehetmeier C, Lain B, Torella C, Henning SW, Beste G, Scroggins BT, Neckers L, Ilag LL, Jay DG (2004) Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 6:507–514

    Article  PubMed  CAS  Google Scholar 

  • Fossati G, Cremonesi P, Izzo G, Rizzi E, Sandrone G, Harding S, Errington N, Walters C, Henderson B, Roberts MM, Coates AR, Mascagni P (2004) The Mycobacterium tuberculosis chaperonin 10 monomer exhibits structural plasticity. Biopolymers 75:148–162

    Article  PubMed  CAS  Google Scholar 

  • Gamerdinger M, Carra S, Behl C (2011) Emerging roles of molecular chaperones and co-chaperones in selective autophagy: focus on BAG proteins. J Mol Med (Berl) 89:1175–1182

    Article  CAS  Google Scholar 

  • Georgopoulos CP, Hohn B (1978) Identification of a host protein necessary for bacteriophage morphogenesis (the groE gene product). Proc Natl Acad Sci U S A 75:131–135

    Article  PubMed  CAS  Google Scholar 

  • Giorgio V, Soriano ME, Basso E, Bisetto E, Lippe G, Forte MA, Bernardi P (2010) Cyclophilin D in mitochondrial pathophysiology. Biochim Biophys Acta 1797:1113–1118

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff P, Gatenby AA, Lorimer GH (1989) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337:44–47

    Article  PubMed  CAS  Google Scholar 

  • Göthel SF, Marahiel MA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55:423–436

    Article  PubMed  Google Scholar 

  • Gray TE, Fersht AR (1991) Cooperativity in ATP hydrolysis by GroEL is increased by GroES. FEBS Lett 292:254–258

    Article  PubMed  CAS  Google Scholar 

  • Habich C, Kempe K, van der Zee R, Rümenapf R, Akiyama H, Kolb H, Burkart V (2005) Heat shock protein 60: specific binding of lipopolysaccharide. J Immunol 174:1298–1305

    PubMed  CAS  Google Scholar 

  • Hageman J, van Waarde MA, Zylicz A, Walerych D, Kampinga HH (2011) The diverse members of the mammalian HSP70 machine show distinct chaperone-like activities. Biochem J 435:127–142

    Article  PubMed  CAS  Google Scholar 

  • Hansen LK, Houchins JP, O’Leary JJ (1991) Differential regulation of HSC70, HSP70, HSP90 alpha, and HSP90 beta mRNA expression by mitogen activation and heat shock in human lymphocytes. Exp Cell Res 192:587–596

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  PubMed  CAS  Google Scholar 

  • Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos GC, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334

    Article  PubMed  CAS  Google Scholar 

  • Henderson B, Martin A (2011) Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 79:3476–3491

    Article  PubMed  CAS  Google Scholar 

  • Henderson B, Pockley AG (2010) Molecular chaperones and protein-folding catalysts as intercellular signaling regulators in immunity and inflammation. J Leukoc Biol 88:445–462

    Article  PubMed  CAS  Google Scholar 

  • Henderson B, Pockley AG (2012) Cellular trafficking of cell stress proteins in health and disease, Volume 6 of Heat shock proteins. Wiley, New York

    Book  Google Scholar 

  • Henderson B, Lund PA, Coates ARM (2010) Multiple moonlighting functions of mycobacterial molecular chaperones. Tuberculosis 90:119–124

    Article  PubMed  CAS  Google Scholar 

  • Henderson B, Fares M, Lund PA (2013) Chaperonin 60: a paradoxical, evolutionarily-conserved, protein with multiple moonlighting functions. Biol Rev Camb Philos Soc (in press)

    Google Scholar 

  • Hightower LE (1980) Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesize several polypeptides. J Cell Physiol 102:407–427

    Article  PubMed  CAS  Google Scholar 

  • Hightower LE, Guidon PT Jr (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138:257–266

    Article  PubMed  CAS  Google Scholar 

  • Hilf N, Singh-Jasuja H, Schild H (2002) The heat shock protein Gp96 links innate and specific immunity. Int J Hyperthermia 18:521–533

    Article  PubMed  CAS  Google Scholar 

  • Horwich AL (2011) Protein folding in the cell: an inside story. Nat Med 17:1211–1216

    Article  PubMed  CAS  Google Scholar 

  • Horwich AL, Fenton WA (2009) Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding. Q Rev Biophys 42:83–116

    Article  PubMed  CAS  Google Scholar 

  • Horwich AL, Apetri AC, Fenton WA (2009) The GroEL/GroES cis cavity as a passive anti-aggregation device. FEBS Lett 583:2654–2662

    Article  PubMed  CAS  Google Scholar 

  • Hunt JF, Weaver AJ, Landry SJ, Gierasch L, Deisenhofer J (1996) The crystal structure of the GroES co-chaperonin at 2.8 A resolution. Nature 379:37–45

    Article  PubMed  CAS  Google Scholar 

  • Jia H, Halilou AI, Hu L, Cai W, Liu J, Huang B (2011) Heat shock protein 10 (Hsp10) in immune-related diseases: one coin, two sides. Int J Biochem Mol Biol 2:47–57

    PubMed  CAS  Google Scholar 

  • Johnson JL (2012) Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochim Biophys Acta 1823:607–613

    Article  PubMed  CAS  Google Scholar 

  • Johnson BJ, Le TT, Dobbin CA, Banovic T, Howard CB, Flores Fde M, Vanags D, Naylor DJ, Hill GR, Suhrbier A (2005) Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production. J Biol Chem 280:4037–4047

    Article  PubMed  CAS  Google Scholar 

  • Johnston D, Oppermann H, Jackson J, Levinson W (1980) Induction of four proteins in chick embryo cells by sodium arsenite. J Biol Chem 255:6975–6980

    PubMed  CAS  Google Scholar 

  • Joly AL, Wettstein G, Mignot G, Ghiringhelli F, Garrido C (2010) Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J Innate Immun 2:238–247

    Article  PubMed  CAS  Google Scholar 

  • Joshi MC, Sharma A, Kant S, Birah A, Gupta GP, Khan SR, Bhatnagar R, Banerjee N (2008) An insecticidal GroEL protein with chitin binding activity from Xenorhabdus nematophila. J Biol Chem 283:28287–28296

    Article  PubMed  CAS  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  PubMed  CAS  Google Scholar 

  • Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M, Hartl FU (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209–220

    Article  PubMed  CAS  Google Scholar 

  • Key JL, Lin CY, Chen YM (1981) Heat shock proteins of higher plants. Proc Natl Acad Sci U S A 78:3526–3530

    Article  PubMed  CAS  Google Scholar 

  • Koga H, Kaushik S, Cuervo AM (2011) Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev 10:205–215

    Article  PubMed  CAS  Google Scholar 

  • Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332:462–464

    Article  PubMed  CAS  Google Scholar 

  • Krukenberg KA, Fo¨rster F, Rice LM, Sali A, Agard DA (2008) Multiple conformations of E. coli Hsp90 in solution: insights into the conformational dynamics of Hsp90. Structure 16:755–765

    Article  PubMed  CAS  Google Scholar 

  • Kubota H (2009) Quality control against misfolded proteins in the cytosol: a network for cell survival. J Biochem 146:609–616

    Article  PubMed  CAS  Google Scholar 

  • Langer T, Pfeifer G, Martin J, Baumeister W, Hartl FU (1992) Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J 11:4757–4765

    PubMed  CAS  Google Scholar 

  • Laskey RA, Honda BM, Mills AD, Finch JT (1978) Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 275:416–420

    Article  PubMed  CAS  Google Scholar 

  • Lee AS, Delegeane AM, Baker V, Chow PC (1983) Transcriptional regulation of two genes specifically induced by glucose starvation in a hamster mutant fibroblast cell line. J Biol Chem 258:597–603

    PubMed  CAS  Google Scholar 

  • Lee AS, Bell J, Ting J (1984) Biochemical characterization of the 94- and 78-kilodalton glucose-regulated proteins in hamster fibroblasts. J Biol Chem 259:4616–4621

    PubMed  CAS  Google Scholar 

  • Lee TH, Pastorino L, Lu KP (2011) Peptidyl-prolyl cis-trans isomerase Pin1 in ageing, cancer and Alzheimer disease. Expert Rev Mol Med 13:e21

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Srivastava PK (1993) Tumor rejection antigen gp96/grp94 is an ATPase: implications for protein folding and antigen presentation. EMBO J 12:3143–3151

    PubMed  CAS  Google Scholar 

  • Li W, Yang Q, Mao Z (2011) Chaperone-mediated autophagy: machinery, regulation and biological consequences. Cell Mol Life Sci 68:749–763

    Article  PubMed  CAS  Google Scholar 

  • Li W, Sahu D, Tsen F (2012) Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochim Biophys Acta 1823:730–741

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Madan D, Rye HS (2008) GroEL stimulates protein folding through forced unfolding. Nat Struct Mol Biol 15:303–311

    Article  PubMed  CAS  Google Scholar 

  • Lorimer GH (2001) A personal account of chaperonin history. Plant Physiol 125:38–41

    Article  PubMed  CAS  Google Scholar 

  • Lu KP, Hanes SD, Hunter T (1996) A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380:544–547

    Article  PubMed  CAS  Google Scholar 

  • Lubben TH, Gatenby AA, Donaldson GK, Lorimer GH, Viitanen PV (1990) Identification of a groES-like chaperonin in mitochondria that facilitates protein folding. Proc Natl Acad Sci U S A 87:7683–7687

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Hendershot LM (2004) The role of the unfolded protein response in tumor development: friend or foe? Nat Rev Cancer 4:966–977

    Article  PubMed  CAS  Google Scholar 

  • Macario AJ, Conway de Macario E (2007) Chaperonopathies and chaperonotherapy. FEBS Lett 581:3681–3688

    Article  PubMed  CAS  Google Scholar 

  • Magen D, Georgopoulos C, Bross P, Ang D, Segev Y, Goldsher D, Nemirovski A, Shahar E, Ravid S, Luder A, Heno B, Gershoni-Baruch R, Skorecki K, Mandel H (2008) Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet 83:30–42

    Article  PubMed  CAS  Google Scholar 

  • Mah LY, Ryan KM (2012) Autophagy and cancer. Cold Spring Harb Perspect Biol 4:a008821

    Article  PubMed  Google Scholar 

  • Mascagni P, Tonolo M, Ball H, Lim M, Ellis RJ, Coates A (1991) Chemical synthesis of 10 kDa chaperonin. Biological activity suggests chaperonins do not require other molecular chaperones. FEBS Lett 286:201–203

    Article  PubMed  CAS  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanisms. CMLS Cell Mol Life Sci 62:670–684

    Article  CAS  Google Scholar 

  • McCready J, Sims JD, Chan D, Jay DG (2010) Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer 10:294

    Article  PubMed  CAS  Google Scholar 

  • McGettrick AF, O’Neill LA (2010) Localisation and trafficking of Toll-like receptors: an important mode of regulation. Curr Opin Immunol 22:20–27

    Article  PubMed  CAS  Google Scholar 

  • Meimaridou E, Gooljar SB, Chapple JP (2009) From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery. J Mol Endocrinol 42:1–9

    Article  PubMed  CAS  Google Scholar 

  • Melnick J, Dul JL, Argon Y (1994) Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature 370:373–375

    Article  PubMed  CAS  Google Scholar 

  • Miller MJ, Xuong NH, Geiduschek EP (1982) Quantitative analysis of the heat shock response of Saccharomyces cerevisiae. J Bacteriol 151:311–327

    PubMed  CAS  Google Scholar 

  • Mirault ME, Goldschmidt-Clermont M, Moran L, Arrigo AP, Tissières A (1978) The effect of heat shock on gene expression in Drosophila melanogaster. Cold Spring Harb Symp Quant Biol 42(Pt 2):819–827

    Article  PubMed  CAS  Google Scholar 

  • Misra UK, Gonzalez-Gronow M, Gawdi G, Hart JP, Johnson CE, Pizzo SV (2002) The role of GRP78 in alpha-2-macroglobulin induced signal transduction. Evidence from RNA interference that the low density lipoprotein receptor-related protein is associated with but not necessary for GRP78-mediated signal transduction. J Biol Chem 277:42082–42087

    Article  PubMed  CAS  Google Scholar 

  • Misra UK, Gonzalez-Gronow M, Gawdi G, Wang F, Pizzo SV (2004) A novel receptor function for the heat shock protein GRP78: silencing of GRP78 gene expression attenuates alpha-2M*-induced signaling. Cell Signal 16:929–938

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI (2011) The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol 76:91–99

    Article  PubMed  CAS  Google Scholar 

  • Morton H, Rolfe B, Clunie GJ (1977) An early pregnancy factor detected in human serum by the rosette inhibition test. Lancet 1:394–397

    Article  PubMed  CAS  Google Scholar 

  • Morton H, McKay DA, Murphy RM, Somodevilla-Torres MJ, Swanson CE, Cassady AI, Summers KM, Cavanagh AC (2000) Production of a recombinant form of early pregnancy factor that can prolong allogeneic skin graft survival time in rats. Immunol Cell Biol 78:603–607

    Article  PubMed  CAS  Google Scholar 

  • Nagradova N (2007) Enzymes catalyzing protein folding and their cellular functions. Curr Protein Pept Sci 8:273–282

    Article  PubMed  CAS  Google Scholar 

  • Nicchitta CV (1998) Biochemical, cell biological and immunological issues surrounding the endoplasmic reticulum chaperone GRP94/gp96. Curr Opin Immunol 10:103–109

    Article  PubMed  CAS  Google Scholar 

  • Noonan FP, Halliday WJ, Morton H, Clunie GJ (1979) Early pregnancy factor is immunosuppressive. Nature 278:649–651

    Article  PubMed  CAS  Google Scholar 

  • Noonan EJ, Place RF, Giardina C, Hightower LE (2007) Hsp70B′ regulation and function. Cell Stress Chaperones 12:393–402

    Article  PubMed  Google Scholar 

  • Olden K, Pratt RM, Jaworski C, Yamada KM (1979) Evidence for role of glycoprotein carbohydrates in membrane transport: specific inhibition by tunicamycin. Proc Natl Acad Sci U S A 76:791–795

    Article  PubMed  CAS  Google Scholar 

  • Panayi GS, Corrigall VM (2008) BiP, an anti-inflammatory ER protein, is a potential new therapy for the treatment of rheumatoid arthritis. Novartis Found Symp 291:212–216

    Article  PubMed  CAS  Google Scholar 

  • Parnas A, Nadler M, Nisemblat S, Horovitz A, Mandel H, Azem A (2009) The MitCHAP-60 disease is due to entropic destabilization of the human mitochondrial Hsp60 oligomer. J Biol Chem 284:28198–28203

    Article  PubMed  CAS  Google Scholar 

  • Picard D (2006) Chaperoning steroid hormone action. Trends Endocrinol Metab 17:229–235

    Article  PubMed  CAS  Google Scholar 

  • Pouyssegur J, Shiu RPC, Pastan I (1977) Induction of two transformation-sensitive membrane polypeptides in normal fibroblasts by a block in glycoprotein synthesis or glucose deprivation. Cell 11:941–947

    Article  PubMed  CAS  Google Scholar 

  • Qamra R, Mande SC (2004) Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis. J Bacteriol 186:8105–8113

    Article  PubMed  CAS  Google Scholar 

  • Qamra R, Srinivas V, Mande SC (2004) Mycobacterium tuberculosis GroEL homologues unusually exist as lower oligomers and retain the ability to suppress aggregation of substrate proteins. J Mol Biol 342:605–617

    Article  PubMed  CAS  Google Scholar 

  • Quintana FJ, Cohen IR (2011) The HSP60 immune system network. Trends Immunol 32:89–95

    Article  PubMed  CAS  Google Scholar 

  • Rampelt H, Mayer MP, Bukau B (2011) Nucleotide exchange factors for Hsp70 chaperones. Methods Mol Biol 787:83–91

    Article  PubMed  CAS  Google Scholar 

  • Ranford JC, Coates AR, Henderson B (2000) Chaperonins are cell-signalling proteins: the unfolding biology of molecular chaperones. Expert Rev Mol Med 2:1–17

    Article  PubMed  CAS  Google Scholar 

  • Ritossa FM (1962) A new puffing pattern induced by a temperature shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Ritossa F (1996) Discovery of the heat shock response. Cell Stress Chaperones 1:97–98

    Article  PubMed  CAS  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  PubMed  CAS  Google Scholar 

  • Sakurai H, Enoki Y (2010) Novel aspects of heat shock factors: DNA recognition, chromatin modulation and gene expression. FEBS J 277:4140–4149

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Shimokawa H, Berk BC (2010) Cyclophilin A: promising new target in cardiovascular therapy. Circ J 74:2249–2256

    Article  PubMed  CAS  Google Scholar 

  • Selye H (1956) The stress of life. McGraw-Hill, New York

    Google Scholar 

  • Shahar A, Melamed-Frank M, Kashi Y, Shimon L, Adir N (2011) The dimeric structure of the Cpn60.2 chaperonin of Mycobacterium tuberculosis at 2.8 Å reveals possible modes of function. J Mol Biol 412:192–203

    Article  PubMed  CAS  Google Scholar 

  • Shamaei-Tousi A, D’Aiuto F, Nibali L, Steptoe A, Coates AR, Parkar M, Donos N, Henderson B (2007) Differential regulation of circulating levels of molecular chaperones in patients undergoing treatment for periodontal disease. PLoS One 2:e1198

    Article  PubMed  CAS  Google Scholar 

  • Sherry B, Yarlett N, Strupp A, Cerami A (1992) Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages. Proc Natl Acad Sci U S A 89:3511–3515

    Article  PubMed  CAS  Google Scholar 

  • Sidera K, El Hamidieh A, Mamalaki A, Patsavoudi E (2011) The 4C5 cell-impermeable anti-HSP90 antibody with anti-cancer activity, is composed of a single light chain dimer. PLoS One 6:e23906

    Article  PubMed  CAS  Google Scholar 

  • Smock RG, Rivoire O, Russ WP, Swain JF, Leibler S, Ranganathan R, Gierasch LM (2010) An interdomain sector mediating allostery in Hsp70 molecular chaperones. Mol Syst Biol 6:414

    Article  PubMed  CAS  Google Scholar 

  • Speth C, Prohászka Z, Mair M, Stöckl G, Zhu X, Jöbstl B, Füst G, Dierich MP (1999) A 60 kD heat-shock protein-like molecule interacts with the HIV transmembrane glycoprotein gp41. Mol Immunol 36:619–628

    Article  PubMed  CAS  Google Scholar 

  • Srivastava PK, Old LJ (1989) Identification of a human homologue of the murine tumor rejection antigen GP96. Cancer Res 49:1341–1343

    PubMed  CAS  Google Scholar 

  • Stangl S, Gehrmann M, Riegger J, Kuhs K, Riederer I, Sievert W, Hube K, Mocikat R, Dressel R, Kremmer E, Pockley AG, Friedrich L, Vigh L, Skerra A, Multhoff G (2011) Targeting membrane heat-shock protein 70 (Hsp70) on tumors by cmHsp70.1 antibody. Proc Natl Acad Sci U S A 108:733–738

    Article  PubMed  CAS  Google Scholar 

  • Staron M, Wu S, Hong F, Stojanovic A, Du X, Bona R, Liu B, Li Z (2011) Heat-shock protein gp96/grp94 is an essential chaperone for the platelet glycoprotein Ib-IX-V complex. Blood 117:7136–7144

    Article  PubMed  CAS  Google Scholar 

  • Stone KR, Smith RE, Joklik WK (1974) Changes in membrane polypeptides that occur when chick embryo fibroblasts and NRK cells are transformed with avian sarcoma viruses. Virology 58:86–100

    Article  PubMed  CAS  Google Scholar 

  • Theuerkorn M, Fischer G, Schiene-Fischer C (2011) Prolyl cis/trans isomerase signalling pathways in cancer. Curr Opin Pharmacol 11:281–287

    Article  PubMed  CAS  Google Scholar 

  • Tilly K, McKittrick N, Zylicz M, Georgopoulos C (1983) The dnaK protein modulates the heat-shock response of Escherichia coli. Cell 34:641–646

    Article  PubMed  CAS  Google Scholar 

  • Tissières A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84:389–398

    Article  PubMed  Google Scholar 

  • Touma C, Gassen NC, Herrmann L, Cheung-Flynn J, Büll DR, Ionescu IA, Heinzmann JM, Knapman A, Siebertz A, Depping AM, Hartmann J, Hausch F, Schmidt MV, Holsboer F, Ising M, Cox MB, Schmidt U, Rein T (2011) FK506 binding protein 5 shapes stress responsiveness: modulation of neuroendocrine reactivity and coping behavior. Biol Psychiatry 70:928–936

    Article  PubMed  CAS  Google Scholar 

  • Travers J, Sharp S, Workman P (2012) HSP90 inhibition: two-pronged exploitation of cancer dependencies. Drug Discov Today 17(5–6):242–252

    Article  PubMed  CAS  Google Scholar 

  • Tun-Kyi A, Finn G, Greenwood A, Nowak M, Lee TH, Asara JM, Tsokos GC, Fitzgerald K, Israel E, Li X, Exley M, Nicholson LK, Lu KP (2011) Essential role for the prolyl isomerase Pin1 in Toll-like receptor signaling and type I interferon-mediated immunity. Nat Immunol 12:733–741

    Article  PubMed  CAS  Google Scholar 

  • Tytell M, Greenberg SG, Lasek RJ (1986) Heat shock-like protein is transferred from glia to axon. Brain Res 363:161–164

    Article  PubMed  CAS  Google Scholar 

  • Vanags D, Williams B, Johnson B, Hall S, Nash P, Taylor A, Weiss J, Feeney D (2006) Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomised trial. Lancet 368:855–863

    Article  PubMed  CAS  Google Scholar 

  • Vanbuskirk A, Crump BL, Margoliash E, Pierce SK (1989) A peptide binding protein having a role in antigen presentation is a member of the HSP70 heat shock family. J Exp Med 170:1799–1809

    Article  PubMed  CAS  Google Scholar 

  • Vos MJ, Hageman J, Carra S, Kampinga HH (2008) Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry 47:7001–7711

    Article  PubMed  CAS  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Heitman J (2005) The cyclophilins. Genome Biol 6:226

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Seidl T, Whittall T, Babaahmady K, Lehner T (2010) Stress-activated dendritic cells interact with CD4+ T cells to elicit homeostatic memory. Eur J Immunol 40:1628–1638

    Article  PubMed  CAS  Google Scholar 

  • Wayne N, Mishra P, Bolon DN (2011) Hsp90 and client protein maturation. Methods Mol Biol 787:33–44

    Article  PubMed  CAS  Google Scholar 

  • Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90–pp 60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91:8324–8328

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Metzler B, Jahangiri M, Mandal K (2012) Molecular chaperones and heat shock proteins in atherosclerosis. Am J Physiol Heart Circ Physiol 302:H506–H514

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Liu B, Dai J, Srivastava PK, Zammit DJ, Lefrançois L, Li Z (2007) Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 26:215–226

    Article  PubMed  CAS  Google Scholar 

  • Yoneda T, Benedetti C, Urano F, Clark SG, Harding HP, Ron D (2004) Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 117:4055–4066

    Article  PubMed  CAS  Google Scholar 

  • Yoshida N, Oeda K, Watanabe E, Mikami T, Fukita Y, Nishimura K, Komai K, Matsuda K (2001) Protein function. Chaperonin turned insect toxin. Nature 411:44

    Article  PubMed  CAS  Google Scholar 

  • Yurchenko V, Constant S, Eisenmesser E, Bukrinsky M (2010) Cyclophilin-CD147 interactions: a new target for anti-inflammatory therapeutics. Clin Exp Immunol 160:305–317

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Kaufman RJ (2006) Protein folding in the endoplasmic reticulum and the unfolded protein response. Handb Exp Pharmacol 172:69–91

    Article  PubMed  CAS  Google Scholar 

  • Zhang LH, Zhang X (2010) Roles of GRP78 in physiology and cancer. J Cell Biochem 110:1299–1305

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ (2002) A mitochondrial specific stress response in mammalian cells. EMBO J 21:4411–4419

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Henderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Henderson, B. (2013). A Brief Introduction to the Eukaryotic Cell Stress Proteins. In: Henderson, B. (eds) Moonlighting Cell Stress Proteins in Microbial Infections. Heat Shock Proteins, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6787-4_2

Download citation

Publish with us

Policies and ethics