Skip to main content

Listeria monocytogenes and Host Hsp60 – An Invasive Pairing

  • Chapter
  • First Online:
Moonlighting Cell Stress Proteins in Microbial Infections

Part of the book series: Heat Shock Proteins ((HESP,volume 7))

Abstract

Microbial infection has a dramatic impact on host cell function and can induce host stress-response programs, including the heat shock response. Listeria monocytogenes is a human foodborne bacterial pathogen which interacts with the host gastrointestinal epithelium during the initial phase of the systemic disease, listeriosis. The early interaction of L. monocytogenes with the intestinal epithelium is a critical determinant of the outcome of infection, and is mediated by multiple bacterial factors, including Listeria adhesion protein (LAP). The epithelial receptor for LAP is human heat shock protein 60 (Hsp60), and the LAP-Hsp60 interaction facilitates bacterial adhesion to and translocation through intestinal epithelial monolayers. Interestingly, L. monocytogenes infection induces the expression of Hsp60 in epithelial cells, a phenomenon which renders host cells more susceptible to subsequent LAP-mediated L. monocytogenes infection. This chapter describes the importance of the host heat shock response during microbial infection, and highlights the role for LAP and host Hsp60 in mediating infection by L. monocytogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Dominguez C, Vazquez-Boland JA, Carrasco-Marin E, Lopez-Mato P, Leyva-Cobian F (1997) Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect Immun 65:78–88

    CAS  PubMed  Google Scholar 

  • Axsen WS, Styer CM, Solnick JV (2009) Inhibition of heat shock protein expression by Helicobacter pylori. Microb Pathog 47:231–236

    Article  CAS  PubMed  Google Scholar 

  • Bakardjiev A, Theriot J, Portnoy D (2006) Listeria monocytogenes traffics from maternal organs to the placenta and back. PLoS Pathog 2:e66

    Article  PubMed  Google Scholar 

  • Barbour A, Rampling A, Hormaeche C (2001) Variation in the infectivity of Listeria monocytogene isolates following intragastric inoculation of mice. Infect Immun 69:4657–4660

    Article  CAS  PubMed  Google Scholar 

  • Barreto A, Rodriguez LS, Rojas OL, Wolf M, Greenberg HB, Franco MA, Angel J (2010) Membrane vesicles released by intestinal epithelial cells infected with rotavirus inhibit T-cell function. Viral Immunol 23:595–608

    Article  CAS  PubMed  Google Scholar 

  • Baud D, Greub G (2011) Intracellular bacteria and adverse pregnancy outcomes. Clin Microbiol Infect 17:1312–1322

    CAS  PubMed  Google Scholar 

  • Belles C, Kuhl A, Nosheny R, Carding SR (1999) Plasma membrane expression of heat shock protein 60 in vivo in response to infection. Infect Immun 67:4191–4200

    CAS  PubMed  Google Scholar 

  • Binder RJ, Blachere NE, Srivastava PK (2001) Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules. J Biol Chem 276:17163–17171

    Article  CAS  PubMed  Google Scholar 

  • Binder RJ, Kelly JB III, Vatner RE, Srivastava PK (2007) Specific immunogenicity of heat shock protein gp96 derives from chaperoned antigenic peptides and not from contaminating protein. J Immunol 179:7254–7261

    CAS  PubMed  Google Scholar 

  • Bocharov AV, Vishnyakova TG, Baranova IN, Remaley AT, Patterson AP, Eggerman TL (2000) Heat shock protein 60 is a high-affinity high-density lipoprotein binding protein. Biochem Biophys Res Commun 277:228–235

    Article  CAS  PubMed  Google Scholar 

  • Braun L, Cossart P (2000) Interactions between Listeria monocytogenes and host mammalian cells. Microbes Infect 2:803–811

    Article  CAS  PubMed  Google Scholar 

  • Burkholder KM, Bhunia AK (2010) Listeria monocytogenes uses Listeria adhesion protein (LAP) to promote bacterial transepithelial translocation, and induces expression of LAP receptor Hsp60. Infect Immun 78:5062–5073

    Article  CAS  PubMed  Google Scholar 

  • Burkholder KM, Kim K-P, Mishra K, Medina S, Hahm B-K, Kim H, Bhunia AK (2009) Expression of LAP, a SecA2-dependent secretory protein, is induced under anaerobic environment. Microbes Infect 11:859–867

    Article  CAS  PubMed  Google Scholar 

  • Byrd CA, Bornmann W, Erdjument-Bromage H, Tempst P, Pavletich N, Rosen N, Nathan CF, Ding A (1999) Heat shock protein 90 mediates macrophage activation by taxol and bacterial lipopolysaccharide. Proc Natl Acad Sci U S A 96(10):5645–5650

    Article  CAS  PubMed  Google Scholar 

  • Cabanes D, Sousa S, Cebria A, Lecuit M, Garcia-del Portillo F, Cossart P (2005) Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO J 24:2827–2838

    Article  CAS  PubMed  Google Scholar 

  • Callahan MK, Garg M, Srivastava PK (2008) Heat-shock protein 90 associates with N-terminal extended peptides and is required for direct and indirect antigen presentation. Proc Natl Acad Sci U S A 105:1662–1667

    Article  CAS  PubMed  Google Scholar 

  • Camejo A, Carvalho F, Reis O, Leitao E, Sousa S, Cabanes D (2011) The arsenal of virulence factors deployed by Listeria monocytogenes to promote its cell infection cycle. Virulence 2:379–394

    Article  PubMed  Google Scholar 

  • Cappello F, Bellafiore M, Palma A, David S, Marciano V, Bartolotta T, Sciume C, Modica G, Farina E, Zummo G, Bucchieri F (2003) 60KDa chaperonin (HSP60) is over-expressed during colorectal carcinogenesis. Eur J Histochem 47:105–109

    CAS  PubMed  Google Scholar 

  • Cappello F, de Macario EC, Marasa L, Zummo G, Macario AJL (2008) Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biol Ther 7:801–809

    Article  CAS  PubMed  Google Scholar 

  • Chavez-Salinas S, Ceballos-Olvera I, Reyes-del Valle J, Medina F, del Angel RM (2008) Heat shock effect upon dengue virus replication into U937 cells. Virus Res 138:111–118

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Androlewicz MJ (2001) Heat shock protein 70 moderately enhances peptide binding and transport by the transporter associated with antigen processing. Immunol Lett 75:143–148

    Article  CAS  PubMed  Google Scholar 

  • Czuprynski CJ, Faith NG, Steinberg H (2003) A/J mice are susceptible and C57BL/6 mice are resistant to Listeria monocytogenes infection by intragastric inoculation. Infect Immun 71:682–689

    Article  CAS  PubMed  Google Scholar 

  • Davies EL, Bacelar MMFVG, Marshall MJ, Johnson E, Wardle TD, Andrew SM, Williams JHH (2006) Heat shock proteins form part of a danger signal cascade in response to lipopolysaccharide and GroEL. Clin Exp Immunol 145:183–189

    Article  CAS  PubMed  Google Scholar 

  • Disson O, Lecuit M (2012) Targeting of the central nervous system by Listeria monocytogenes. Virulence 3:213–221

    Article  PubMed  Google Scholar 

  • Dutta D, Bagchi P, Chatterjee A, Nayak MK, Mukherjee A, Chattopadhyay S, Nagashima S, Kobayashi N, Komoto S, Taniguchi K, Chawla-Sarkar M (2009) The molecular chaperone heat shock protein-90 positively regulates rotavirus infection. Virology 391:325–333

    Article  CAS  PubMed  Google Scholar 

  • Dziewanowska K, Carson AR, Patti JM, Deobald CF, Bayles KW, Bohach GA (2000) Staphylococcal fibronectin binding protein interacts with heat shock protein 60 and integrins: role in internalization by epithelial cells. Infect Immun 68:6321–6328

    Article  CAS  PubMed  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  PubMed  Google Scholar 

  • Ferm MT, Soderstrom K, Jindal S, Gronberg A, Ivanyi J, Young R, Kiessling R (1992) Induction of human Hsp60 expression in monocytic cell lines. Int Immunol 4:305–311

    Article  CAS  PubMed  Google Scholar 

  • Fisch P, Malkovsky M, Kovats S, Sturm E, Braakman E, Klein BS, Voss SD, Morrissey LW, Demars R, Welch WJ, Bolhuis RLH, Sondel PM (1990) Recognition by human V-gamma-9/V-delta-2 T cells of a GroEL homolog on Daudi-Burkitt lymphoma cells. Science 250:1269–1273

    Article  CAS  PubMed  Google Scholar 

  • Freitag NE, Port GC, Miner MD (2009) Listeria monocytogenes from saprophyte to intracellular pathogen. Nat Rev Microbiol 7:623–628

    Article  CAS  PubMed  Google Scholar 

  • Habich C, Kempe K, van der Zee R, Rümenapf R, Akiyama H, Kolb H, Burkart V (2005) Heat shock protein 60: specific binding of lipopolysaccharide. J Immunol 174:1298–1305

    CAS  PubMed  Google Scholar 

  • Henderson B, Calderwood S, Coates ARM, Cohen IR, van Eden W, Lehner T, Pockley AG (2010) Caught with their PAMPs down? The extracellular signalling actions of molecular chaperones are not due to microbial contaminants. Cell Stress Chaperones 15:123–141

    Article  CAS  PubMed  Google Scholar 

  • Itoh H, Komatsuda A, Ohtani H, Waku IH, Imai H, Sawada K, Otaka M, Ogura M, Suzuki A, Hamada F (2002) Mammalian Hsp60 is quickly sorted into the mitochondria under conditions of dehydration. Eur J Biochem 269:5931–5938

    Article  CAS  PubMed  Google Scholar 

  • Jagadeesan B, Koo O-K, Kim K-P, Burkholder KM, Mishra KK, Aroonnual A, Bhunia AK (2010) LAP, an alcohol acetaldehyde dehydrogenase enzyme in Listeria promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species. Microbiology 156:2782–2795

    Article  CAS  PubMed  Google Scholar 

  • Jagadeesan B, Fleishman Littlejohn AE, Amalaradjou MAR, Singh AK, Mishra KK, La D, Kihara D, Bhunia AK (2011) N-Terminal Gly224–Gly411 domain in Listeria adhesion protein interacts with host receptor Hsp60. PLoS One 6:e20694

    Article  CAS  PubMed  Google Scholar 

  • Jaradat ZW, Bhunia AK (2002) Glucose and nutrient concentrations affect the expression of a 104-kilodalton Listeria adhesion protein in Listeria monocytogenes. Appl Environ Microbiol 68:4876–4883

    Article  CAS  PubMed  Google Scholar 

  • Jaradat ZW, Bhunia AK (2003) Adhesion, invasion and translocation characteristics of Listeria monocytogenes serotypes in Caco-2 cell and mouse models. Appl Environ Microbiol 69:3640–3645

    Article  CAS  PubMed  Google Scholar 

  • Jaradat ZW, Wampler JL, Bhunia AK (2003) A Listeria adhesion protein-deficient Listeria monocytogenes strain shows reduced adhesion primarily to intestinal cell lines. Med Microbiol Immunol 192:85–91

    PubMed  Google Scholar 

  • Jones M, Gupta RS, Englesberg E (1994) Enhancement in amount of P1 (Hsp60) in mutants of Chinese hamster ovary (Cho-K1) cells exhibiting increases in the A-system of amino acid transport. Proc Natl Acad Sci U S A 91:858–862

    Article  CAS  PubMed  Google Scholar 

  • Jonquieres R, Bierne H, Fiedler F, Gounon P, Cossart P (1999) Interaction between the protein InIB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of Gram-positive bacteria. Mol Microbiol 34:902–914

    Article  CAS  PubMed  Google Scholar 

  • Kaur I, Voss SD, Gupta RS, Schell K, Fisch P, Sondel PM (1993) Human peripheral gamma-delta T cells recognize Hsp60 molecules on Daudi-Burkitts lymphoma cells. J Immunol 150:2046–2055

    CAS  PubMed  Google Scholar 

  • Khelef N, Lecuit M, Bierne H, Cossart P (2006) Species specificity of the Listeria monocytogenes InlB protein. Cell Microbiol 8:457–470

    Article  CAS  PubMed  Google Scholar 

  • Kim K-P, Jagadeesan B, Burkholder KM, Jaradat ZW, Wampler JL, Lathrop AA, Morgan MT, Bhunia AK (2006) Adhesion characteristics of Listeria adhesion protein (LAP)-expressing Escherichia coli to Caco-2 cells and of recombinant LAP to eukaryotic receptor Hsp60 as examined in a surface plasmon resonance sensor. FEMS Microbiol Lett 256:324–332

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Amalaradjou MAR, Kim KH, Bhunia AK (2012) Listeria adhesion protein induces epithelial tight junction compromise through activation of NF-κB and down regulation of tight junction proteins. In: American Society for Microbiology general meeting, San Francisco, 16–19 June 2012

    Google Scholar 

  • Kondo Y, Ueno Y, Kobayashi K, Kakazu E, Shiina M, Inoue J, Tamai K, Wakui Y, Tanaka Y, Ninomiya M, Obara N, Fukushima K, Ishii M, Kobayashi T, Niitsuma H, Kon S, Shimosegawa T (2010) Hepatitis B virus replication could enhance regulatory T cell activity by producing soluble heat shock protein 60 from hepatocytes. J Infect Dis 202:202–213

    Article  CAS  PubMed  Google Scholar 

  • Koo OK, Liu Y, Shuaib S, Bhattacharya S, Ladisch MR, Bashir R, Bhunia AK (2009) Targeted capture of pathogenic bacteria using a mammalian cell receptor coupled with dielectrophoresis on a biochip. Anal Chem 81:3094–3101

    Article  CAS  PubMed  Google Scholar 

  • Koo OK, Aroonnual A, Bhunia AK (2011) Human heat-shock protein 60 receptor-coated paramagnetic beads show improved capture of Listeria monocytogenes in the presence of other Listeria in food. J Appl Microbiol 111:93–104

    Article  CAS  PubMed  Google Scholar 

  • Koo OK, Amalaradjou MAR, Bhunia AK (2012) Recombinant probiotic expressing Listeria adhesion protein attenuates Listeria monocytogenes virulence in vitro. PLoS One 7:e29277

    Article  CAS  PubMed  Google Scholar 

  • Lahaye X, Vidy A, Fouquet B, Blondel D (2012) Hsp70 protein positively regulates rabies virus infection. J Virol 86:4743–4751

    Article  CAS  PubMed  Google Scholar 

  • Lam GY, Czuczman MA, Higgins DE, Brumell JH (2012) Interactions of Listeria monocytogenes with the autophagy system of host cells. In: Emil RU, Javier AC (eds) Advances in immunology, vol 113. Academic, New York, pp 7–18

    Google Scholar 

  • Lamont RF, Sobel J, Mazaki-Tovi S, Kusanovic Juan P, Vaisbuch E, Kim Sun K, Uldbjerg N, Romero R (2011) Listeriosis in human pregnancy: a systematic review. J Perinat Med 39:227–236

    Article  PubMed  Google Scholar 

  • Lecuit M, Vandormael-Pournin S, Lefort J, Huerre M, Gounon P, Dupuy C, Babinet C, Cossart P (2001) A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:1722–1725

    Article  CAS  PubMed  Google Scholar 

  • Li ZH, Dai J, Zheng H, Liu B, Caudill M (2002) An integrated view of the roles and mechanisms of heat shock protein GP96-peptide complex in eliciting immune response. Front Biosci 7:D731–D751

    Article  CAS  PubMed  Google Scholar 

  • Lindén S, Bierne H, Sabet C, Png C, Florin T, McGuckin M, Cossart P (2008) Listeria monocytogenes internalins bind to the human intestinal mucin MUC2. Arch Microbiol 190(1):101–104

    Article  PubMed  Google Scholar 

  • Linderoth NA, Simon MN, Hainfeld JF, Sastry S (2001) Binding of antigenic peptide to the endoplasmic reticulum-resident protein gp96/GRP94 heat shock chaperone occurs in higher order complexes: essential role of some aromatic amino acid residues in the peptide-binding site. J Biol Chem 276:11049–11054

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Chen Y, Lu G, Sun L, Si J (2011) Down-regulation of HSP70 sensitizes gastric epithelial cells to apoptosis and growth retardation triggered by H. Pylori. BMC Gastroenterol 11:146

    Article  CAS  PubMed  Google Scholar 

  • Macario AJ, Conway de Macario E (2007) Molecular chaperones: multiple functions, pathologies, and potential applications. Front Biosci 12:2588–2600

    Article  CAS  PubMed  Google Scholar 

  • Malago JJ, Koninkx JFJG, Ovelgonne HH, van Asten FJAM, Swennenhuis JF, van Dijk JE (2003) Expression levels of heat shock proteins in enterocyte-like Caco-2 cells after exposure to Salmonella enteritidis. Cell Stress Chaperones 8:194–203

    Article  CAS  PubMed  Google Scholar 

  • Ménoret A, Li Z, Niswonger ML, Altmeyer A, Srivastava PK (2001) An endoplasmic reticulum protein implicated in chaperoning peptides to major histocompatibility of class I is an aminopeptidase. J Biol Chem 276:33313–33318

    Article  PubMed  Google Scholar 

  • Merendino AM, Bucchieri F, Campanella C, MarcianÃ2 V, Ribbene A, David S, Zummo G, Burgio G, Corona DFV, de Macario EC, Macario AJL, Cappello F (2010) Hsp60 is actively secreted by human tumor cells. PLoS One 5:e9247

    Article  PubMed  Google Scholar 

  • Milohanic E, Jonquieres R, Glaser P, Dehoux P, Jacquet C, Berche P, Cossart P, Gaillard J-L (2004) Sequence and binding activity of the autolysin-adhesin Ami from epidemic Listeria monocytogenes 4b. Infect Immun 72:4401–4409

    Article  CAS  PubMed  Google Scholar 

  • Mishra KK, Mendonca M, Aroonnual A, Burkholder KM, Bhunia AK (2011) Genetic organization and molecular characterization of secA2 locus in Listeria species. Gene 489(2):76–85

    Article  CAS  PubMed  Google Scholar 

  • Murapa P, Ward MR, Gandhapudi SK, Woodward JG, D’Orazio SEF (2011) Heat shock factor 1 protects mice from rapid death during Listeria monocytogenes infection by regulating expression of tumor necrosis factor alpha during fever. Infect Immun 79(1):177–184

    Article  CAS  PubMed  Google Scholar 

  • Njemini R, Mets T (2010) Circulating stress proteins in infectious disease. In: Pockley AG, Calderwood SK, Santoro MG (eds) Prokaryotic and eukaryotic heat shock proteins in infectious disease, vol 4, Heat shock proteins. Springer, Dordrecht, pp 227–239

    Chapter  Google Scholar 

  • Ogawa M, Yoshikawa Y, Mimuro H, Hain T, Chakraborty T, Sasakawa C (2011) Autophagy targeting of Listeria monocytogenes and the bacterial countermeasure. Autophagy 7:310–314

    Article  CAS  PubMed  Google Scholar 

  • Osterloh A, Breloer M (2008) Heat shock proteins: linking danger and pathogen recognition. Med Microbiol Immunol 197:1–8

    Article  CAS  PubMed  Google Scholar 

  • Osterloh A, Kalinke U, Weiss S, Fleischer B, Breloer M (2007) Synergistic and differential modulation of immune responses by Hsp60 and lipopolysaccharide. J Biol Chem 282:4669–4680

    Article  CAS  PubMed  Google Scholar 

  • Padwad YS, Mishra KP, Jain M, Chanda S, Karan D, Ganju L (2009) RNA interference mediated silencing of Hsp60 gene in human monocytic myeloma cell line U937 revealed decreased dengue virus multiplication. Immunobiology 214:422–429

    Article  CAS  PubMed  Google Scholar 

  • Padwad YS, Mishra KP, Jain M, Chanda S, Ganju L (2010) Dengue virus infection activates cellular chaperone Hsp70 in THP-1 cells: downregulation of Hsp70 by siRNA revealed decreased viral replication. Viral Immunol 23:557–565

    Article  CAS  PubMed  Google Scholar 

  • Pandiripally VK, Westbrook DG, Sunki GR, Bhunia AK (1999) Surface protein p104 is involved in adhesion of Listeria monocytogenes to human intestinal cell line, Caco-2. J Med Microbiol 48:117–124

    Article  CAS  PubMed  Google Scholar 

  • Park S-H, Bolender N, Eisele F, Kostova Z, Takeuchi J, Coffino P, Wolf DH (2007) The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin–proteasome system. Mol Biol Cell 18:153–165

    Article  PubMed  Google Scholar 

  • Pierzchalski P, Krawiec A, Ptak-Belowska A, Barańska A, Konturek SJ, Pawlik WW (2006) The mechanism of heat-shock protein 70 gene expression abolition in gastric epithelium caused by Helicobacter pylori infection. Helicobacter 11:96–104

    Article  CAS  PubMed  Google Scholar 

  • Pizarro-Cerdá J, Kühbacher A, Cossart P (2012) Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb Perspect Med 2(11). doi:pii: a010009. 10.1101/cshperspect.a010009

  • Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362:469–476

    Article  CAS  PubMed  Google Scholar 

  • Pockley AG, Muthanal M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79

    Article  CAS  PubMed  Google Scholar 

  • Reis O, Sousa S, Camejo A, Villiers V, Gouin E, Cossart P, Cabanes D (2010) LapB, a novel Listeria monocytogenes LPXTG surface adhesin, required for entry into eukaryotic cells and virulence. J Infect Dis 202:551–562

    Article  CAS  PubMed  Google Scholar 

  • Reyes-del Valle J, Chávez-Salinas S, Medina F, del Angel RM (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79:4557–4567

    Article  CAS  PubMed  Google Scholar 

  • Rigel NW, Braunstein M (2008) A new twist on an old pathway - accessory secretion systems. Mol Microbiol 69:291–302

    Article  CAS  PubMed  Google Scholar 

  • Rodolico V, Tomasello G, Zerilli M, Martorana A, Pitruzzella A, Gammazza AM, David S, Zummo G, Damiani P, Accomando S, de Macario EC, Macario AJL, Cappello F (2010) Hsp60 and Hsp10 increase in colon mucosa of Crohn’s disease and ulcerative colitis. Cell Stress Chaperones 15:877–884

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez LS, Barreto A, Franco MA, Angel J (2009) Immunomodulators released during rotavirus infection of polarized Caco-2 cells. Viral Immunol 22:163–172

    Article  CAS  PubMed  Google Scholar 

  • Sabet C, Toledo-Arana A, Personnic N, Lecuit M, Dubrac S, Poupel O, Gouin E, Nahori M-A, Cossart P, Bierne H (2008) The Listeria monocytogenes virulence factor InlJ is specifically expressed in vivo and behaves as an adhesin. Infect Immun 76:1368–1378

    Article  CAS  PubMed  Google Scholar 

  • Santiago NI, Zipf A, Bhunia AK (1999) Influence of temperature and growth phase on expression of a 104-kilodalton Listeria adhesion protein in Listeria monocytogenes. Appl Environ Microbiol 65:2765–2769

    CAS  PubMed  Google Scholar 

  • Singh B, Patel HV, Ridley RG, Freeman KB, Gupta RS (1990) Mitochondrial import of the human chaperonin (HSP60) protein. Biochem Biophys Res Commun 169:391–396

    Article  CAS  PubMed  Google Scholar 

  • Sleator RD, Watson D, Hill C, Gahan CGM (2009) The interaction between Listeria monocytogenes and the host gastrointestinal tract. Microbiology 155:2463–2475

    Article  CAS  PubMed  Google Scholar 

  • Soltys BJ, Gupta RS (1997) Cell surface localization of the 60 kDa heat shock chaperonin protein (hsp60) in mammalian cells. Cell Biol Int 21:315–320

    Article  CAS  PubMed  Google Scholar 

  • Soltys BJ, Gupta RS (1999) Mitochondrial-matrix proteins at unexpected locations: are they exported? Trends Biochem Sci 24:174–177

    Article  CAS  PubMed  Google Scholar 

  • Srivastava P (2002) Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 20:4610–4610

    Google Scholar 

  • Triantafilou K, Triantafilou M, Ladha S, Mackie A, Dedrick RL, Fernandez N, Cherry R (2001) Fluorescence recovery after photobleaching reveals that LPS rapidly transfers from CD14 to hsp70 and hsp90 on the cell membrane. J Cell Sci 114:2535–2545

    CAS  PubMed  Google Scholar 

  • Tsan MF, Gao B (2009) Heat shock proteins and immune system. J Leukoc Biol 85(6):905–910

    Article  CAS  PubMed  Google Scholar 

  • Tsuji T, Matsuzaki J, Caballero OL, Jungbluth AA, Ritter G, Odunsi K, Old LJ, Gnjatic S (2012) Heat shock protein 90-mediated peptide-selective presentation of cytosolic tumor antigen for direct recognition of tumors by CD4+ T cells. J Immunol 188:3851–3858

    Article  CAS  PubMed  Google Scholar 

  • Udono H, Srivastava PK (1994) Comparison of tumor-specific immunogenicities of stress-induced proteins GP96, Hsp90, and Hsp70. J Immunol 152:5398–5403

    CAS  PubMed  Google Scholar 

  • Vance RE, Isberg RR, Portnoy DA (2009) Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6:10–21

    Article  CAS  PubMed  Google Scholar 

  • Wampler JL, Kim KP, Jaradat Z, Bhunia AK (2004) Heat shock protein 60 acts as a receptor for the Listeria adhesion protein in Caco-2 cells. Infect Immun 72:931–936

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Tachibana M, Tanaka S, Furuoka H, Horiuchi M, Suzuki H, Watarai M (2008) Heat shock cognate protein 70 contributes to Brucella invasion into trophoblast giant cells that cause infectious abortion. BMC Microbiol 8:212

    Article  PubMed  Google Scholar 

  • Wells AD, Malkovsky M (2000) Heat shock proteins, tumor immunogenicity and antigen presentation: an integrated view. Immunol Today 21:129–132

    Article  CAS  PubMed  Google Scholar 

  • Wells CL, van de Westerlo EMA, Jechorek RP, Haines HM, Erlandsen SL (1998) Cytochalasin-induced actin disruption of polarized enterocytes can augment internalization of bacteria. Infect Immun 66:2410–2419

    CAS  PubMed  Google Scholar 

  • Xayarath B, Marquis H, Port GC, Freitag NE (2009) Listeria monocytogenes CtaP is a multifunctional cysteine transport-associated protein required for bacterial pathogenesis. Mol Microbiol 74:956–973

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Research in Bhunia laboratory is supported by grants from the United States Department of Agriculture (1935-42,000-072-02G; 201,995) and the Center for Food Safety Engineering at Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K. Bhunia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Burkholder, K.M., Bhunia, A.K. (2013). Listeria monocytogenes and Host Hsp60 – An Invasive Pairing. In: Henderson, B. (eds) Moonlighting Cell Stress Proteins in Microbial Infections. Heat Shock Proteins, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6787-4_17

Download citation

Publish with us

Policies and ethics