Skip to main content

Role of Peptidyl-Prolyl cis/trans Isomerases in Cellular Uptake of Bacterial Protein Toxins

  • Chapter
  • First Online:
Moonlighting Cell Stress Proteins in Microbial Infections

Part of the book series: Heat Shock Proteins ((HESP,volume 7))

Abstract

Binary actin ADP-ribosylating toxins consist of two proteins which are produced and secreted by pathogenic clostridia. The enzyme components ADP-­ribosylate actin in the cytosol of mammalian cells which leads to destruction of the actin cytoskeleton. The separate transport components are heptameric ring-shaped molecules which bind to receptors on the surface of target cells, assemble with the enzyme components and trigger the subsequent receptor-mediated endocytosis of the toxin complexes. The enzyme components then translocate from acidified endosomal vesicles into the host cell cytosol. This step is also mediated by the transport components which change their conformation and form pores in the endosomal membranes due to the acidic conditions in the endosomes. The enzyme components translocate as unfolded proteins through these pores across endosomal membranes and their translocation and/or refolding is facilitated by cytosolic host cell factors including the chaperone Hsp90. We discovered that PPIases such as cyclophilin A and FK506-binding proteins 51/52 are also involved in membrane translocation of these toxins. The PPIases interacted with the enzyme components in vitro and in living cells and their pharmacological inhibition by cyclosporin A or FK506 inhibited the translocation of the enzyme components to the cytosol and thus protected living cells from intoxication with binary actin-ADP-ribosylating toxins. In conclusion, we have identified a novel Hsp90/PPIase-dependent translocation mechanism which might be selective for ADP-ribosylating toxins. The pharmacological inhibition of toxin translocation could lead to novel therapeutic strategies against diseases associated with such bacterial toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aktories K, Barth H (2011) New insights into the mode of action of the actin ADP-ribosylating virulence factors Salmonella enterica SpvB and Clostridium botulinum C2 toxin. Eur J Cell Biol 90:944–950

    Article  PubMed  Google Scholar 

  • Aktories K, Wegner A (1989) ADP-ribosylation of actin by clostridial toxins. J Cell Biol 109:1385–1387

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392

    Article  PubMed  CAS  Google Scholar 

  • Barth H (2011) Exploring the role of host cell chaperones/PPIases during cellular up-take of bacterial ADP-ribosylating toxins as basis for novel pharmacological strategies to protect mammalian cells against these virulence factors. Naunyn-Schmiedeberg’s Arch Pharmacol 383:237–245

    Article  CAS  Google Scholar 

  • Barth H, Preiss JC, Hofmann F, Aktories K (1998a) Characterization of the catalytic site of the ADP-ribosyltransferase Clostridium botulinum C2 toxin by site-directed mutagenesis. J Biol Chem 273:29506–29511

    Article  PubMed  CAS  Google Scholar 

  • Barth H, Hofmann F, Olenik C, Just I, Aktories K (1998b) The N-terminal part of the enzyme component (C2I) of the binary Clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP-ribosylating C3-like fusion toxin. Infect Immun 66:1364–1369

    PubMed  CAS  Google Scholar 

  • Barth H, Blöcker D, Behlke J, Bergsma-Schutter W, Brisson A, Benz R, Aktories K (2000) Cellular uptake of Clostridium botulinum C2 toxin requires oligomerization and acidification. J Biol Chem 275:18704–18711

    Article  PubMed  CAS  Google Scholar 

  • Barth H, Roebling R, Fritz M, Aktories K (2002) The binary Clostridium botulinum C2 toxin as a protein delivery system: identification of the minimal protein region necessary for interaction of toxin components. J Biol Chem 277:5074–5081

    Article  PubMed  CAS  Google Scholar 

  • Barth H, Aktories K, Popoff MR, Stiles BG (2004) Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 68:373–402

    Article  PubMed  CAS  Google Scholar 

  • Blanke SR, Milne JC, Benson EL, Collier RJ (1996) Fused polycationic peptide mediates delivery of diphtheria toxin A chain to the cytosol in the presence of anthrax protective antigen. Proc Natl Acad Sci U S A 93:8437–8442

    Article  PubMed  CAS  Google Scholar 

  • Blöcker D, Pohlmann K, Haug G, Bachmeyer C, Benz R, Aktories K, Barth H (2003) Clostridium botulinum C2 toxin: low pH-induced pore formation is required for translocation of the enzyme component C2I into the cytosol of host cells. J Biol Chem 278:37360–37367

    Article  PubMed  Google Scholar 

  • Borel JF (1989) Pharmacology of cyclosporin (Sandimmune) IV. Pharmacological properties in vivo. Pharmacol Rev 42:259–371

    Google Scholar 

  • Callebaut I, Renoir JM, Lebeau MC, Massol N, Burny A, Baulieu EE, Mornon JP (1992) An immunophilin that binds M(r) 90,000 heat shock protein: main structural features of a mammalian p59 protein. Proc Natl Acad Sci U S A 89:6270–6274

    Article  PubMed  CAS  Google Scholar 

  • Chambraud B, Rouvière-Fourmy N, Radanyi C, Hsiao K, Peattie DA, Livingston DJ, Baulieu EE (1993) Overexpression of p59-HBI (FKBP59), full length and domains, and characterization of PPlase activity. Biochem Biophys Res Commun 196:160–166

    Article  PubMed  CAS  Google Scholar 

  • Collier RJ (1995) Three-dimensional structure of diphtheria toxin. In: Moss J, Iglewski B, Vaughan M, Tu AT (eds) Bacterial toxins and virulence factors in disease. Marcel Dekker, New York, pp 81–93

    Google Scholar 

  • Collier RJ (2009) Membrane translocation by anthrax toxin. Mol Aspects Med 30:413–422

    Article  PubMed  CAS  Google Scholar 

  • Daum S, Schumann M, Mathea S, Aumüller T, Balsley MA, Constant SL, de Lacroix BF, Kruska F, Braun M, Schiene-Fischer C (2009) Isoform-specific inhibition of cyclophilins. Biochemistry 48:6268–6277

    Article  PubMed  CAS  Google Scholar 

  • Dmochewitz L, Lillich M, Kaiser E, Jennings LD, Lang AE, Buchner J, Fischer G, Aktories K, Collier RJ, Barth H (2011) Role of CypA and Hsp90 in membrane translocation mediated by anthrax protective antigen. Cell Microbiol 13:359–373

    Article  PubMed  CAS  Google Scholar 

  • Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD, Ahn NG, Oskarsson MK, Fukasawa K, Paull KD, Woude GFV (1998) Proteolytic inactivation of MAP-kinase-­kinase by anthrax lethal factor. Science 280:734–737

    Article  PubMed  CAS  Google Scholar 

  • Eckhardt M, Barth H, Blöcker D, Aktories K (2000) Binding of Clostridium botulinum C2 toxin to asparagine-linked complex and hybrid carbohydrates. J Biol Chem 275:2328–2334

    Article  PubMed  CAS  Google Scholar 

  • Elliott JF, Lin Y, Mizel SB, Bleackley RC, Harnish DG, Paetkau V (1984) Induction of interleukin 2 messenger RNA inhibited by cyclosporin A. Science 226:1439–1441

    Article  PubMed  CAS  Google Scholar 

  • Fischer G, Bang H, Mech C (1984) Determination of enzymatic catalysis for the cis-trans-­isomerization of peptide binding in proline-containing peptides. Biomed Biochim Acta 43:1101–1111

    PubMed  CAS  Google Scholar 

  • Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid FX (1989) Cyclophilin and peptidyl-­prolyl cis-trans isomerase are probably identical proteins. Nature 337:476–478

    Article  PubMed  CAS  Google Scholar 

  • Fischer G, Gallay P, Hopkins S (2010) Cyclophilin inhibitors for the treatment of HCV infection. Curr Opin Investig Drugs 11:911–918

    PubMed  CAS  Google Scholar 

  • Fujii N, Kubota T, Shirakawa S, Kimura K, Ohishi I, Moriishi K, Isogai E, Isogai H (1996) Characterization of component-I gene of botulinum C2 toxin and PCR detection of its gene in clostridial species. Biochem Biophys Res Commun 220:353–359

    Article  PubMed  CAS  Google Scholar 

  • Galat A (2003) Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity-targets-­functions. Curr Top Med Chem 3:1315–1347

    Article  PubMed  CAS  Google Scholar 

  • Göthel SF, Marahiel MA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55:423–436

    Article  PubMed  Google Scholar 

  • Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226:544–547

    Article  PubMed  CAS  Google Scholar 

  • Haug G, Leemhuis J, Tiemann D, Meyer DK, Aktories K, Barth H (2003a) The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol. J Biol Chem 278:32266–32274

    Article  PubMed  CAS  Google Scholar 

  • Haug G, Wilde C, Leemhuis J, Meyer DK, Aktories K, Barth H (2003b) Cellular uptake of Clostridium botulinum C2 toxin: membrane translocation of a fusion toxin requires unfolding of its dihydrofolate reductase domain. Biochemistry 42:15284–15291

    Article  PubMed  CAS  Google Scholar 

  • Haug G, Aktories K, Barth H (2004) The host cell chaperone Hsp90 is necessary for cytotoxic action of the binary iota-like toxins. Infect Immun 72:3066–3068

    Article  PubMed  CAS  Google Scholar 

  • Heine K, Pust S, Enzenmüller S, Barth H (2008) ADP-ribosylation of actin by Clostridium ­botulinum C2 toxin in mammalian cells results in delayed caspase-dependent apoptotic cell death. Infect Immun 76:4600–4608

    Article  PubMed  CAS  Google Scholar 

  • Kaiser E, Haug G, Hliscs M, Aktories K, Barth H (2006) Formation of a biologically active toxin complex of the binary Clostridium botulinum C2 toxin without cell membrane interaction. Biochemistry 45:13361–13368

    Article  PubMed  CAS  Google Scholar 

  • Kaiser E, Pust S, Kroll C, Barth H (2009) Cyclophilin A facilitates translocation of the Clostridium botulinum C2 toxin across membranes of acidified endosomes into the cytosol of mammalian cells. Cell Microbiol 11:780–795

    Article  PubMed  CAS  Google Scholar 

  • Kaiser E, Kroll C, Ernst K, Schwan C, Popoff MR, Fischer G, Buchner J, Aktories K, Barth H (2011) Membrane translocation of binary actin-ADP-ribosylating toxins from Clostridium difficile and Clostridium perfringens is facilitated by Cyclophilin A and Hsp90. Infect Immun 79:3913–3921

    Article  PubMed  CAS  Google Scholar 

  • Kaiser E, Böhm N, Ernst K, Langer S, Schwan C, Aktories K, Popoff MR, Fischer G, Barth H (2012) FK506-binding protein 51 interacts with Clostridium botulinum C2 toxin and FK506 blocks membrane translocation of the toxin in mammalian cells. Cell Microbiol 14:1193–1205

    Article  PubMed  CAS  Google Scholar 

  • Krönke M, Leonard WJ, Depper JM, Arya SK, Wong-Staal F, Gallo RC, Waldmann TA, Greene WC (1984) Cyclosporin A inhibits T-cell growth factor gene expression at the level of mRNA transcription. Proc Natl Acad Sci U S A 81:5214–5218

    Article  PubMed  Google Scholar 

  • Lang K, Schmid FX, Fischer G (1987) Catalysis of protein folding by prolyl isomerase. Nature 329:268–270

    Article  PubMed  CAS  Google Scholar 

  • Lemichez E, Bomsel M, Devilliers G, VanderSpek J, Murphy JR, Lukianov EV, Olsnes S, Boquet P (1997) Membrane translocation of diphtheria toxin fragment A exploits early to late endosome trafficking machinery. Mol Microbiol 23:445–457

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66:807–815

    Article  PubMed  CAS  Google Scholar 

  • Majoul IV, Bastiaens PI, Söling HD (1996) Transport of an external Lys-Asp-Glu-Leu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: studies with cholera toxin in Vero cells. J Cell Biol 133:777–789

    Article  PubMed  CAS  Google Scholar 

  • Masignani V, Pizza M, Rappuoli R (2000) Common features of ADP-ribosyltransferases. In: Aktories K, Just I (eds) Handbook of experimental pharmacology 145. Springer, Berlin, pp 21–44

    Google Scholar 

  • Masignani V, Pizza M, Rappuoli R (2006) Molecular, functional and evolutionary aspects of ADP-­ribosylating toxins. In: Alouf JE, Popoff MR (eds) The comprehensive sourcebook of bacterial protein toxins, 3rd edn. Academic Press, Paris, pp 213–244

    Chapter  Google Scholar 

  • Montecucco C, Papini E, Schiavo G (1994) Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett 346:92–98

    Article  PubMed  CAS  Google Scholar 

  • Murphy JR (2011) Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process. Toxins (Basel) 3:294–308

    Article  CAS  Google Scholar 

  • Nagahama M, Hagiyama T, Kojima T, Aoyanagi K, Takahashi C, Oda M, Sakaguchi Y, Oguma K, Sakurai J (2009) Binding and internalization of Clostridium botulinum C2 toxin. Infect Immun 77:5139–5148

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Serikawa T, Yamakawa K, Nishida S, Kozaki S, Sakaguchi G (1978) Sporulation and C2 toxin production by Clostridium botulinum type C strains producing no C1 toxin. Microbiol Immunol 22:591–596

    PubMed  CAS  Google Scholar 

  • Ni L, Yang CS, Gioeli D, Frierson H, Toft DO, Paschal BM (2010) FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells. Mol Cell Biol 30:1243–1253

    Article  PubMed  CAS  Google Scholar 

  • Oh KJ, Senzel L, Collier RJ, Finkelstein A (1999) Translocation of the catalytic domain of diphtheria toxin across planar phospholipid bilayers by its own T domain. Proc Natl Acad Sci U S A 96:8467–8470

    Article  PubMed  CAS  Google Scholar 

  • Ohishi I (1983a) Lethal and vascular permeability activities of botulinum C2 toxin induced by separate injections of the two toxin components. Infect Immun 40:336–339

    PubMed  CAS  Google Scholar 

  • Ohishi I (1983b) Response of mouse intestinal loop to botulinum C2 toxin: enterotoxic activity induced by cooperation of nonlinked protein components. Infect Immun 40:691–695

    PubMed  CAS  Google Scholar 

  • Ohishi I (1987) Activation of botulinum C2 toxin by trypsin. Infect Immun 55:1461–1465

    PubMed  CAS  Google Scholar 

  • Ohishi I, Miyake M (1985) Binding of the two components of C2 toxin to epithelial cells and brush borders of mouse intestine. Infect Immun 48:769–775

    PubMed  CAS  Google Scholar 

  • Ohishi I, Tsuyama S (1986) ADP-ribosylation of nonmuscle actin with component I of C2 toxin. Biochem Biophys Res Commun 136:802–806

    Article  PubMed  CAS  Google Scholar 

  • Ohishi I, Yanagimoto A (1992) Visualizations of binding and internalization of two nonlinked protein components of botulinum C2 toxin in tissue culture cells. Infect Immun 60:4648–4655

    PubMed  CAS  Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G (1980) Purification and characterization of two components of botulinum C2 toxin. Infect Immun 30:668–673

    PubMed  CAS  Google Scholar 

  • Ohishi I, Miyake M, Ogura H, Nakamura S (1984) Cytopathic effect of botulinum C2 toxin on tissue-culture cells. FEMS Microbiol Lett 23:281–284

    Article  CAS  Google Scholar 

  • Olsnes S, Moskaug JO, Stenmark H, Sandvig K (1988) Diphtheria toxin entry: protein translocation in the reverse direction. Trends Biochem Sci 13:348–351

    Article  PubMed  CAS  Google Scholar 

  • Olsnes S, Wesche J, Falnes PO (2000) Uptake of protein toxins acting inside cells. In: Aktories K, Just I (eds) Bacterial protein toxins. Springer, Berlin, pp 1–19

    Google Scholar 

  • Papatheodorou P, Carette JE, Bell GW, Schwan C, Guttenberg G, Brummelkamp TR, Aktories K (2011) Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc Natl Acad Sci U S A 108:16422–16427

    Article  PubMed  CAS  Google Scholar 

  • Papatheodorou P, Wilczek C, Nölke T, Guttenberg G, Hornuss D, Schwan C, Aktories K (2012) Identification of the cellular receptor of Clostridium spiroforme toxin. Infect Immun 80:1418–1423

    Article  PubMed  CAS  Google Scholar 

  • Pirkl F, Buchner J (2001) Functional analysis of the Hsp90-associated human peptidyl prolyl cis/trans isomerases FKBP51, FKBP52 and Cyp40. J Mol Biol 308:795–806

    Article  PubMed  CAS  Google Scholar 

  • Popoff MR, Rubin EJ, Gill DM, Boquet P (1988) Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 56:2299–2306

    PubMed  CAS  Google Scholar 

  • Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360

    Article  PubMed  CAS  Google Scholar 

  • Pust S, Hochmann H, Kaiser E, von Figura G, Heine K, Aktories K, Barth H (2007) A recombinant fusion toxin as a tool to study the cytopathic effects of the actin-ADP-ribosylating virulence factor SpvB from Salmonella enterica. J Biol Chem 282:10272–10282

    Article  PubMed  CAS  Google Scholar 

  • Pust S, Barth H, Sandvig K (2010) Clostridium botulinum C2 toxin is internalized by clathrin- and Rho-dependent mechanisms. Cell Microbiol 12:1809–1820

    Article  PubMed  CAS  Google Scholar 

  • Ratts R, Zeng H, Berg EA, Blue C, McComb ME, Costello CE, vanderSpek JC, Murphy JR (2003) The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J Cell Biol 160:1139–1150

    Article  PubMed  CAS  Google Scholar 

  • Sakurai J, Kobayashi K (1995) Lethal and dermonecrotic activities of Clostridium perfringens iota toxin: biological activities induced by cooperation of two nonlinked components. Microbiol Immunol 39:249–253

    PubMed  CAS  Google Scholar 

  • Sandvig K, Olsnes S (1981) Rapid entry of nicked diphtheria toxin into cells at low pH. Characterization of the entry process and effects of low pH on the toxin molecule. J Biol Chem 256:9068–9076

    PubMed  CAS  Google Scholar 

  • Sandvig K, Olsnes S (1984) Receptor-mediated entry of protein toxins into cells. Acta Histochem 29:79–94

    CAS  Google Scholar 

  • Schering B, Barmann M, Chhatwal GS, Geipel U, Aktories K (1988) ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur J Biochem 171:225–229

    Article  PubMed  CAS  Google Scholar 

  • Schleberger C, Hochmann H, Barth H, Aktories K, Schulz GE (2006) Structure and action of the binary C2 toxin from Clostridium botulinum. J Mol Biol 364:705–715

    Article  PubMed  CAS  Google Scholar 

  • Schmid FX (1993) Prolyl isomerase: enzymatic catalysis of slow protein-folding reactions. Annu Rev Biophys Biomol Struct 22:123–142

    Article  PubMed  CAS  Google Scholar 

  • Schmid FX, Mayr LM, Mucke M, Schonbrunner ER (1993) Prolyl isomerases: role in protein folding. Adv Protein Chem 44:25–66

    Article  PubMed  CAS  Google Scholar 

  • Simpson LL (1982) A comparison of the pharmacological properties of Clostridium botulinum type C1 and C2 toxins. J Pharmacol Exp Ther 223:695–701

    PubMed  CAS  Google Scholar 

  • Simpson LL, Stiles BG, Zepeda H, Wilkins TD (1989) Production by Clostridium spiroforme of an iotalike toxin that possesses mono(ADP-ribosyl)transferase activity: identification of a novel class of ADP-ribosyltransferases. Infect Immun 57:255–261

    PubMed  CAS  Google Scholar 

  • Stechschulte LA, Sanchez ER (2011) FKBP51- a selective modulator of glucocorticoid and androgen sensitivity. Curr Opin Pharmacol 11:332–337

    Article  PubMed  CAS  Google Scholar 

  • Sterthoff C, Lang AE, Schwan C, Tauch A, Aktories A (2010) Functional characterization of an extended binding component of the actin-ADP-ribosylating C2 toxin detected in Clostridium botulinum strain (C) 2300. Infect Immun 78:1468–1474

    Article  PubMed  CAS  Google Scholar 

  • Stiles BG, Blöcker D, Hale ML, Guetthoff MA, Barth H (2002) Clostridium botulinum C2 toxin: binding studies with fluorescence-activated cytometry. Toxicon 40:1135–1140

    Article  PubMed  CAS  Google Scholar 

  • Stiles B, Wigglesworth D, Popoff MR, Barth H (2011) Binary clostridial toxins: new aspects on their biology and use in pharmacology and biotechnology. Front Cell Infect Microbiol 1:11

    Article  PubMed  Google Scholar 

  • Swanson SK, Born T, Zydowsky LD, Cho H, Chang HY, Walsh CT, Rusnak F (1992) Cyclosporin-­mediated inhibition of bovine calcineurin by cyclophilins A and B. Proc Natl Acad Sci U S A 89:3741–3745

    Article  PubMed  CAS  Google Scholar 

  • Tamayo AG, Bharti A, Trujillo C, Harrison R, Murphy JR (2008) COPI coatomer complex proteins facilitate the translocation of anthrax lethal factor across vesicular membranes in vitro. Proc Natl Acad Sci U S A 105:5254–5259

    Article  PubMed  CAS  Google Scholar 

  • Taylor M, Navarro-Garcia F, Huerta J, Burress H, Massey S, Ireton K, Teter K (2010) Hsp90 is required for transfer of the cholera toxin A1 subunit from the endoplasmic reticulum to the cytosol. J Biol Chem 285:31261–31267

    Article  PubMed  CAS  Google Scholar 

  • Tonello F, Montecucco C (2009) The anthrax lethal factor and its MAPK kinase-specific metalloprotease activity. Mol Aspects Med 30:431–438

    Article  PubMed  CAS  Google Scholar 

  • Trujillo C, Ratts R, Tamayo A, Harrison R, Murphy JR (2006) Trojan horse or proton force: finding the right partner(s) for toxin translocation. Neurotox Res 9:63–71

    Article  PubMed  CAS  Google Scholar 

  • van der Goot FG, Gruenberg J (2006) Intra-endosomal membrane traffic. Trends Cell Biol 16:514–521

    Article  PubMed  Google Scholar 

  • Vitale G, Pellizzari R, Recchi C, Napolitani G, Mock M, Montecucco C (1998) Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. Biochem Biophys Res Commun 248:706–711

    Article  PubMed  CAS  Google Scholar 

  • Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283:18473–18477

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Heitman J (2005) The cyclophilins. Genome Biol 6:226

    Article  PubMed  Google Scholar 

  • Weiwad M, Edlich F, Kilka S, Erdmann F, Jarczowski F, Dorn M, Moutty MC, Fischer G (2006) Comparative analysis of calcineurin inhibition by complexes of immunosuppressive drugs with human FK506 binding proteins. Biochemistry 45:15776–15784

    Article  PubMed  CAS  Google Scholar 

  • Wesche J, Elliott JL, Falnes PO, Olsnes S, Collier RJ (1998) Characterization of membrane translocation by anthrax protective antigen. Biochemistry 37:15737–15746

    Article  PubMed  CAS  Google Scholar 

  • Wiegers W, Just I, Müller H, Hellwig A, Traub P, Aktories K (1991) Alteration of the cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP-­ribosyltransferase. Eur J Cell Biol 54:237–245

    PubMed  CAS  Google Scholar 

  • Young JA, Collier RJ (2007) Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem 76:243–265

    Article  PubMed  CAS  Google Scholar 

  • Zornetta I, Brandi L, Janowiak B, Dal Molin F, Tonello F, Collier RJ, Montecucco C (2010) Imaging the cell entry of the anthrax oedema and lethal toxins with fluorescent protein chimeras. Cell Microbiol 12:1435–1445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research underlying this book chapter was supported by the Deutsche Forschungsgemeinschaft (BA 2087/1, BA 2087/2) and the Medical Faculty of the University of Ulm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Barth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barth, H. (2013). Role of Peptidyl-Prolyl cis/trans Isomerases in Cellular Uptake of Bacterial Protein Toxins. In: Henderson, B. (eds) Moonlighting Cell Stress Proteins in Microbial Infections. Heat Shock Proteins, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6787-4_16

Download citation

Publish with us

Policies and ethics