Considerable Analytical Methods

  • Sayyid Habibollah HashemiKachapiEmail author
  • Davood DomairryGanji
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 202)


The harmonic balance method (HBM) is a technique used in systems including both linear and nonlinear parts. The fundamental idea of HBM is to decompose the system into two separate subsystems, a linear part and a nonlinear part. The linear part is treated in the frequency domain, and the nonlinear part in the time domain. The interface between the subsystems consists of the Fourier transform pair. Harmonic balance is said to be reached when a chosen number of harmonics N satisfy some predefined convergence criteria. First, an appropriate unknown is chosen to use in the convergence check, which is performed in the frequency domain. Then the equations are rewritten in a suitable form for a convergence loop. One starts with an initial value of the chosen unknown, applies the different linear and nonlinear equations, and finally reaches a new value of the chosen unknown. If the difference between the initial value and the final value of the first N harmonics satisfies the predefined convergence criteria, harmonic balance is reached. Otherwise, an increment of the initial value is calculated by using a generalized Euler method—namely, the Newton–Raphson method.


  1. Abdel-Halim Hassan, I.H.: Different applications for differential transformation in the differential equations. J. Appl. Math. Comput. 129, 183–201 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  2. Adomian, G.: New approach to nonlinear partial differential equations. J. Math. Anal. Appl. 102, 420–434 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  3. Adomian, G.: A review of the decomposition method and some recent results for nonlinear equations. Math. Comput. Model. 13(7), 17–43 (1992)MathSciNetCrossRefGoogle Scholar
  4. Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Boston (1994a)zbMATHCrossRefGoogle Scholar
  5. Adomian, G.: Solution of physical problems by decomposition. Comput. Math. Appl. 27, 145–154 (1994b)MathSciNetzbMATHCrossRefGoogle Scholar
  6. Ayaz, F.: Solutions of the system of differential equations by differential transform method. Appl. Math. Comput. 147, 547–567 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  7. Baker, G.A. Jr.: Essentials of Padé Approximants in Theoretical Physics, pp. 27–38. Academic Press, New York (1975)Google Scholar
  8. Fereidoon, A., Kordani, N., Rostamiyan, Y., Ganji, D.D.: Analytical solution to determine displacement of nonlinear oscillations with parametric excitation by differential transformation method. Math. Comput. Appl. 15(5), 810–815 (2010)MathSciNetzbMATHGoogle Scholar
  9. Ganji, D.D.: Approximate analytical solutions to nonlinear oscillators using He’s amplitude-frequency formulation. Int. J. Math. Anal. 4(32), 1591–1597 (2010)Google Scholar
  10. Ganji, D.D., Esmaeilpour, M.: Soheil Soleimani: approximate solutions to Van der Pol damped nonlinear oscillators by means of He’s energy balance method. Int. J. Comput. Math. 87(9), 2014–2023 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  11. Ganji, D.D., Kachapi, S.H.H.: Analysis of Nonlinear Equations in Fluids, Progress in Nonlinear Science, vol. 3, pp. 1–293. Asian Academic Publisher Limited, Hong Kong (2011a) Google Scholar
  12. Ganji, D.D., Kachapi, S.H.H.: Analytical and Numerical Methods in Engineering and Applied Sciences, Progress in Nonlinear Science, vol. 3, pp. 1–579. Asian Academic Publisher Limited, Hong Kong (2011b)Google Scholar
  13. Ganji, D.D., Kachapi, S.H.H.: Nonlinear Analysis in Science and Engineering. Cambridge International Science Publisher, Cambridge (in press, 2013a)Google Scholar
  14. Ganji, D.D., Kachapi, S.H.H.: Nonlinear Differential Equations: Analytical Methods and Application. Cambridge International Science Publisher associated with Springer (in press, 2013b)Google Scholar
  15. Ganji, D.D., Nourollahi, M., Rostamian, M.: A comparison of variational iteration method with Adomian’s decomposition method in some highly nonlinear equations. Int. J. Sci. Technol. 2(2), 179–188 (2007)Google Scholar
  16. Ganji, S.S., Sfahani, M.G., Modares Tonekaboni, S.M., Moosavi, A.K., Ganji, D.D.: Higher-order solutions of coupled systems using the parameter expansion method. Math. Probl. Eng. 2009, Article ID 327462, 1–20 (2009a)Google Scholar
  17. Ganji, S.S., Ganji, D.D., Ganji, Z.Z., Karimpour, S.: Periodic solution for strongly nonlinear vibration systems by He’s energy balance method. Acta Applicandae Mathematicae 106(1), 79–92 (2009b). doi: 10.1007/s10440-008-9283-6 MathSciNetzbMATHCrossRefGoogle Scholar
  18. Ganji, S.S., Ganji, D.D., Babazadeh, H., Sadoughi, N.: Application of amplitude- frequency formulation to nonlinear oscillation system of the motion of a rigid rod rocking back. Math. Methods Appl. Sci. 33(2), 157–166 (2010a)Google Scholar
  19. Ganji, D.D., Alipour, M.M., Fereidoon, A.H., Rostamiyan, Y.: Analytic approach to investigation of fluctuation and frequency of the oscillators with odd and even nonlinearities. IJE Trans. A: Basics 23, 41–56 (2010b)zbMATHGoogle Scholar
  20. Gupta, V.H., Munjal, M.L.: On numerical prediction of the acoustic source characteristics of an engine exhaust system. J. Acoust. Soc. Am. 92(5), 2716–2725 (1992)CrossRefGoogle Scholar
  21. Hassan, I.H.A.H.: On solving some eigenvalue-problems by using a differential transformation. Appl. Math. Comput. 127(1), 1–22 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  22. Hassan, I.H.A.H.: Differential transformation technique for solving higher-order initial value problems. Appl. Math. Comput. 154(2), 299–311 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  23. He, J.H.: Bookkeeping parameter in perturbation methods. Int. J. Non-linear Sci. Numer. Simul. 2, 257–264 (2001a)zbMATHGoogle Scholar
  24. He, J.H.: Modified Lindstedt–Poincare methods for some non-linear oscillations. Part III: double series expansion. Int. J. Non-linear Sci. Numer. Simul. 2, 317–320 (2001b)Google Scholar
  25. He, J.H.: Modified Lindstedt–Poincare methods for some strongly non-linear oscillations. Part II: a new transformation. Int. J. Non-linear Mech. 37(2), 309–314 (2002)Google Scholar
  26. He, J.-H.: Solution of nonlinear equations by an ancient Chinese algorithm. Appl. Math. Comput. 151(1), 293–297 (2004)Google Scholar
  27. Kimiaeifar, A., Saidi, A.R., Bagheri, G.H., Rahimpour, M., Domairry, D.G.: Analytical solution for Van der Pol–Duffing oscillators. Chaos, Solitons & Fractals 42(5), 2660–2666 (2009a)Google Scholar
  28. Kimiaeifar, A., Saidi, A.R., Sohouli, A.R., Ganji, D.D.: Analysis of modified Van der Pol’s oscillator using He’s parameter-expanding methods. Curr. Appl. Phys 10 (2010) Google Scholar
  29. Liu, L., Dowell, E.H.: Harmonic balance approach for an airfoil with a freeplay control surface. AIAA J. 43(4), 802 (2005)CrossRefGoogle Scholar
  30. Liu, H., Song, Y.: Differential transform method applied to high index differential-algebraic equations. Appl. Math. Comput. 184, 748–753 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  31. Liu, L., Thomas, J.P., Dowell, E.H., Attar, P., Hall, K.C.: A comparison of classical and high dimensional harmonic balance approaches for a Duffing oscillator. J. Comput. Phys. 215(1), 298–320 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  32. Luo, X.-G.: A two-step Adomian decomposition method. Appl. Math. Comput. 170(1), 570–583 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  33. Momani, S., Ertürk, V.S.: Solutions of non-linear oscillators by the modified differential transform method. Comput. Math. Appl. 55(4), 833–842 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  34. Momeni, M., Jamshidi, N., Barari, A., Ganji, D.D.: Application of He’s energy balance method to Duffing-harmonic oscillators. Int. J. Comput. Math. 88(1), 135–144 (2011a)MathSciNetzbMATHCrossRefGoogle Scholar
  35. Momeni, M., Jamshidi, N., Barari, A., Ganji, D.D.: Application of He’s energy balance method to Duffing-harmonic oscillators. Int. J. Comput. Math. 88(1), 135–144 (2011b)MathSciNetzbMATHCrossRefGoogle Scholar
  36. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (2000)zbMATHCrossRefGoogle Scholar
  37. Ragulskis, M., Fedaravicius, A., Ragulskis, K.: Harmonic balance method for FEM analysis of fluid flow in a vibrating pipe. Commun. Numer. Methods Eng. 22(5), 347–356 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  38. Sadighi, A., Ganji, D.D.: Exact solutions of Laplace equation by homotopy-perturbation and Adomian decomposition methods. Phys. Lett. A 367(1–2), 83–87 (2007)Google Scholar
  39. Sadighi, A., Ganji, D.D.: Analytic treatment of linear and nonlinear Schrödinger equations: a study with homotopy-perturbation and Adomian decomposition methods. Phys. Lett. A 372(4), 465–469 (2008a)Google Scholar
  40. Sadighi, A., Ganji, D.D.: A study on one dimensional nonlinear thermoelasticity by Adomian decomposition method. World J. Model. Simul. 4(1), 19–25 (2008b)Google Scholar
  41. Sadighi, A., Ganji, D.D., Sabzehmeidani, Y.: A decomposition method for volume flux and average velocity of thin film flow of a third grade fluid down an inclined plane. Adv. Theor. Appl. Mech. 1(1), 45–59 (2008)zbMATHGoogle Scholar
  42. Safari, M., Ganji, D.D., Moslemi, M.: Application of He’s variational iteration method and Adomian’s decomposition method to the fractional KdV-Burgers-Kuramoto equation. Comput. Math. Appl. 58(11–12), 2091–2097 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  43. Telli, S., Kopmaz, O.: Free vibrations of a mass grounded by linear and non-linear springs in series. J. Sound Vib. 289, 689–710 (2006)CrossRefGoogle Scholar
  44. Wang, S.-Q., He, J.-H.: Nonlinear oscillator with discontinuity by parameter-expansion method. Chaos, Solitons Fractals 35, 688–691 (2008)Google Scholar
  45. Wazwaz, A.M.: The modified decomposition method and the Pade approximants for solving Thomas–Fermi equation. Appl. Math. Comput. 105, 11–19 (1999a)MathSciNetzbMATHCrossRefGoogle Scholar
  46. Wazwaz, A.M.: A reliable modification of Adomian decomposition method. Appl. Math. Comput. 102, 77–86 (1999b)MathSciNetzbMATHCrossRefGoogle Scholar
  47. Wazwaz, A.M.: Construction of solitary wave solutions and rational solutions for the KdV equation by Adomian decomposition method. Chaos, Solitons Fractals 12, 2283–2293 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  48. Wu, D.M., Wang, Z.: A Mathematica program for the approximate analytical solution to a nonlinear undamped Duffing equation by a new approximate approach. Comput. Phys. Commun. 174(6), 447–463 (2006)CrossRefGoogle Scholar
  49. Zhang, B.-Q., Luo, X.-G., Wu, Q.-B.: The restrictions and improvement of the Adomian decomposition method. Appl. Math. Comput. 171(1), 99–104 (2006)MathSciNetCrossRefGoogle Scholar
  50. Zhou, J.K.: Differential Transformation and its Applications for Electrical Circuits. Huazhong University Press, Wuhan (1986). (in Chinese)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2014

Authors and Affiliations

  • Sayyid Habibollah HashemiKachapi
    • 1
    Email author
  • Davood DomairryGanji
    • 1
  1. 1.Department of Mechanical EngineeringBabol University of TechnologyBabolIran

Personalised recommendations