Advertisement

Perturbation and Variational Methods

  • Sayyid Habibollah HashemiKachapiEmail author
  • Davood DomairryGanji
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 202)

Abstract

In this chapter and Chap. 3, we will use mathematical methods (analytical and numerical methods) for solving strongly nonlinear systems in field dynamics and vibration. More of these methods are mathematics methods that have been introduced by Chinese scientists, especially Professor Ji-Huan He.

References

  1. Akbarzade, M., Langari, J., Ganji, D.D.: A coupled homotopy-variational method and variational formulation applied to nonlinear oscillators with and without discontinuities. J. Vib. Acoust. 133(4), 044501 (4 pages) (2011). doi:  10.1115/1.4003662 Google Scholar
  2. Babazadeh, H., Ganji, D.D., Akbarzade, M.: He’s energy balance method to evaluate the effect of amplitude on the natural frequency in nonlinear vibration systems. Prog. Electromagn. Res. M 4, 143–154 (2008)CrossRefGoogle Scholar
  3. Barari, A., Omidvar, M., Ghotbi, A.R., Ganji, D.D.: Application of homotopy perturbation method and variational iteration method to nonlinear oscillator differential equations. Acta Applicanda Mathematicae 104(2), 161–171 (2010)Google Scholar
  4. Beléndez, A., Hernández, A., Beléndez, T., Neipp, C., Márquez, A.: Higher accuracy analytical approximations to a nonlinear oscillator with discontinuity by He’s homotopy perturbation method. Phys. Lett. A 372, 2010–2016 (2008)zbMATHCrossRefGoogle Scholar
  5. de Sterke, C.M., Sipe, J.E.: Phys. Rev. A 38, 5149 (1988)CrossRefGoogle Scholar
  6. Ding, X.-h., Zhang L.: Applying He’s parameterized perturbation method for solving differential-difference equation. Int. J. Nonlinear Sci. Numer. Simul. 10(9), 1249–1252 (2009)Google Scholar
  7. Fidlin, A.: Nonlinear Oscillations in Mechanical Engineering. Springer, Berlin (2006)Google Scholar
  8. Ganji, D.D., Esmaeilpour, M.: Soheil Soleimani: approximate solutions to Van der Pol damped nonlinear oscillators by means of He’s energy balance method. Int. J. Comput. Math. 87(9), 2014–2023 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. Ganji, D.D., Hashemi, S.H.H.: Explicit solutions for fourth-order equation with variable coefficients in higher-dimensional spaces using He’s homotopy perturbation method. Far East J. Appl. Math. 26(3), 305–320 (2007)MathSciNetzbMATHGoogle Scholar
  10. Ganji, D.D., Afrouzi, G.A., Hosseinzadeh, H., Talarposhti, R.A.: Application of homotopy-perturbation method to the second kind of nonlinear integral equations. Phys. Lett. A 371(1–2), 20–25 (2007a)Google Scholar
  11. Ganji, D.D., Tari, H., Jooybari, M.B.: Variational iteration method and homotopy perturbation method for nonlinear evolution equations. Comput. Math. Appl. 54(7–8), 1018–1027 (2007b)Google Scholar
  12. Ganji, D.D., et.al.: Application of homotopy perturbation method and variational iteration method to nonlinear oscillator differential equations. Acta Applicandae Mathematicae 104(2) (2008a) Google Scholar
  13. Ganji, S.S., Ganji, D.D., Babazadeh, H., Karimpour, S.: Variational approach method for nonlinear oscillations of the motion of a rigid rod rocking back and cubic. Prog. Electromagn. Res. M 4, 23–32 (2008b)CrossRefGoogle Scholar
  14. Ganji, D.D., Sadighi, A., Khatami, I.: Assessment of two analytical approaches in some nonlinear problems arising in engineering sciences. Phys. Lett. A 372(24), 4399–4406 (2008c)zbMATHCrossRefGoogle Scholar
  15. Ganji, D.D., Karimpour, S., Ganji, S.S.: Approximate analytical solutions to nonlinear oscillations of non-natural systems using He’s Energy Balance Method. Prog. Electromagn. Res. M 5, 43–54 (2008d)CrossRefGoogle Scholar
  16. Ganji, D.D., Mirgolbabaei, H., Miansari, M., Miansari, M.: Application of homotopy perturbation method to solve linear and non-linear systems of ordinary differential equations and differential equation of order three. J. Appl. Sci. 8(7), 1256–1261 (2008e)CrossRefGoogle Scholar
  17. Ganji, D.D., Gorji, M., Soleimani, S., Esmaeilpour, M.: Solution of nonlinear cubic-quintic Duffing oscillators using He’s Energy Balance Method. J. Zhejiang Univ. Sci. 10(9), 1263–1268 (2009a)Google Scholar
  18. Ganji, D.D., Kachapi, S.H.H.: Analysis of Nonlinear Equations in Fluids, Progress in Nonlinear Science, vol. 3, pp. 1–293. Asian Academic Publisher Limited, Hong Kong (2011)Google Scholar
  19. Ganji, S.S., Ganji, D.D., Karimpour, S.: He’s energy balance and He’s variational methods for nonlinear oscillations in engineering. Int. J. Mod. Phys. B 23(3), 461–471 (2009b)zbMATHCrossRefGoogle Scholar
  20. Ganji, D.D., Rafei, M., Sadighi, A., Ganji, Z.Z.: A comparative comparison of He’s Method with perturbation and numerical methods for nonlinear vibrations equations. Int. J. Nonlinear Dyn. Eng. Sci. 1(1), 1–20 (2009c)Google Scholar
  21. Ganji, S.S., Ganji, D.D., Karimpour, S., Babazadeh, H.: Applications of He’s homotopy perturbation method to obtain second-order approximations of the coupled two-degree-of-freedom systems. Int. J. Nonlinear Sci. Num. Simul. 10(3), 305–314 (2009d)CrossRefGoogle Scholar
  22. Ganji, S.S., Ganji, D.D., Ganji, Z.Z., Karimpour, S.: Periodic solution for strongly nonlinear vibration systems by He’s energy balance method. Acta Applicandae Mathematicae 106(1), 79–92 (2009e)MathSciNetzbMATHCrossRefGoogle Scholar
  23. Ganji, D.D., Sahouli, A.R., Famouri, M.: A new modification of He’s homotopy perturbation method for rapid convergence of nonlinear undamped oscillators. J. Appl. Math. Comput. 30, 181–192 (2009f)MathSciNetzbMATHCrossRefGoogle Scholar
  24. Ghotbi, A.R., Barari, A., Ganji, D.D.: Solving ratio-dependent predator-prey system with constant effort harvesting using homotopy perturbation method. Math. Probl. Eng. 2008, Article ID 945420, 1–8 (2008)Google Scholar
  25. Hashemi, S.H., Mohammadi Daniali, H.R., Ganji, D.D.: Numerical simulation of the generalized Huxley equation by He’s homotopy perturbation method. Appl. Math. Comput. 192, 157–161 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  26. Hashemi, S.H.A.. Tolou, K.N., Barari, A., Choobbasti, A.J.: On the approximate explicit solutions of linear and non-linear non-homogenous dissipative wave equations. J. Appl. Funct. Anal. 4(3), 449–458 (2009)Google Scholar
  27. He, J.H.: A new approach to nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2(4), 230–235 (1997a)CrossRefGoogle Scholar
  28. He, J.: Modified Lagrange multiplier method and generalized variational principle in fluid mechanics. J. Shanghai Univ. (English Edition), 1(2), 117–122 (1997b). doi:  10.1007/s11741-997-0007-3
  29. He, J.-H.: A new method called the semi-inverse method to search for variational principles in fluids. Ph.D. thesis, Shanghai University (1997c)Google Scholar
  30. He, J.H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 167, 57–68 (1998a)zbMATHCrossRefGoogle Scholar
  31. He, J.H.: A new approach to nonlinear partial differential equations. Comput. Methods Appl. Mech. Eng. 167, 69–73 (1998b)zbMATHCrossRefGoogle Scholar
  32. He, J.H.: Approximate solution of nonlinear differential equations with convolution product nonlinearities. Comput. Methods Appl. Mech. Eng. 167, 69–73 (1998c)zbMATHCrossRefGoogle Scholar
  33. He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999a)zbMATHCrossRefGoogle Scholar
  34. He, J.H.: Some new approaches to Duffing equation with strongly and high order nonlinearity (II), parametrized perturbation technique. Commun. Nonlinear Sci. Numer. Simul. 4(1), 81–83 (1999b)MathSciNetzbMATHCrossRefGoogle Scholar
  35. He, J.H.: Variational iteration method—a kind of non-linear analytical technique: some examples. Int. J. Non-linear Mech. 34, 699–708 (1999c)zbMATHCrossRefGoogle Scholar
  36. He, J.H.: A review on some new recently developed nonlinear analytical techniques. Int J Non-linear Sci Numer Simul 1, 51–70 (2000a)zbMATHGoogle Scholar
  37. He, J.H.: Variational approach for nonlinear oscillators. Chaos Solitons Frac-tals 34, 1430–1439 (2000b)CrossRefGoogle Scholar
  38. He, J.H.: Variational iteration method for autonomous ordinary differential systems. Appl. Math. Comput. 114, 115–123 (2000c)MathSciNetzbMATHCrossRefGoogle Scholar
  39. He, J.H.: A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-linear Mech. 35, 37–43 (2000d)Google Scholar
  40. He, J.H.: Bookkeeping parameter in perturbation methods. Int. J. Non-linear Sci. Numer. Simul 2(3), 257–264 (2001a)zbMATHCrossRefGoogle Scholar
  41. He, J.H.: Iteration perturbation method for strongly nonlinear oscillations. J. Vib. Control 7(5), 631–642 (2001b)MathSciNetzbMATHCrossRefGoogle Scholar
  42. He, J.H.: Modified Lindstedt–Poincare methods for some non-linear oscillations. Part III: double series expansion. Int. J. Non-linear Sci. Numer. Simul. 2, 317–320 (2001c)Google Scholar
  43. He, J.H.: Preliminary report on the energy balance for non–linear oscillations. Mech. Res. Commun. 29(2–3), 107–118 (2002a)zbMATHCrossRefGoogle Scholar
  44. He, J.H.: Recent developments in asymptotic methods for nonlinear ordinary equations. Int. J. Comput. Numer. Anal. Appl. 2(2), 127–140 (2002b)MathSciNetzbMATHGoogle Scholar
  45. He, J.H.: Homotopy perturbation method: a new nonlinear analytical technique. Appl. Math. Comput. 135, 73–79 (2003a)MathSciNetzbMATHCrossRefGoogle Scholar
  46. He, J.H.: Determination of limit cycles for strongly nonlinear oscillators. Phys. Rev. Lett. 90(17), Art No. 174301 (2003b)Google Scholar
  47. He, J.H.: The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. Math. Comput. 151, 287–292 (2004a)MathSciNetzbMATHCrossRefGoogle Scholar
  48. He, J.H.: Comparison of homotopy perturbation method and homotopy analysis method. Appl. Math. Comput. 156, 527–539 (2004b)MathSciNetzbMATHCrossRefGoogle Scholar
  49. He, J.H.: Asymptotology by homotopy perturbation method. Appl. Math. Comput. 156(3), 591–596 (2004c)MathSciNetzbMATHCrossRefGoogle Scholar
  50. He, J.H.: Homotopy perturbation method for bifurcation of nonlinear problems. Int. J. Non-linear Sci. Numer. Simul. 6(2), 207–208 (2005a)Google Scholar
  51. He, J.H.: Application of homotopy perturbation method to nonlinear wave equations. Chaos, Solitons Fractals 26, 695–700 (2005b)zbMATHCrossRefGoogle Scholar
  52. He, J.H.: Limit cycle and bifurcation of nonlinear problems. Chaos, Solitons Fractals 26(3), 827–833 (2005c)zbMATHCrossRefGoogle Scholar
  53. He, J.H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20(10), 1141–1199 (2006a)zbMATHCrossRefGoogle Scholar
  54. He, J.H.: Homotopy perturbation method for solving boundary value problems. Phys. Lett. A 350(1–2), 87–88 (2006b)MathSciNetzbMATHCrossRefGoogle Scholar
  55. He, J.-H.: Non Perturbative Methods for Strongly Nonlinear Problems, 1st edn. Donghua University Publication, Donghua (2006c)Google Scholar
  56. He, J.-H.: New interpretation of homotopy perturbation method. Int. J. Mod. Phys. B 20, 2561–2568 (2006d)Google Scholar
  57. He, J.H.: Variational approach for non–linear oscillators. Chaos and Solitons and Fractals 34, 1430–1439 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  58. He, J.-H.: An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering. Int. J. Mod. Phys. B, 22(21), 3487–3578 (2008)Google Scholar
  59. He, J.H., Abdou, M.A.: New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos, Solitons Fractals 34, 1421–1429 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  60. He, J.H., Wu, X.H.: Construction of solitary solution and compaction-like solution by variational iteration method. Chaos, Solitons Fractals 29, 108–113 (2006a)MathSciNetzbMATHCrossRefGoogle Scholar
  61. He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos, Solitons Fractals 30, 700–708 (2006b)MathSciNetzbMATHCrossRefGoogle Scholar
  62. Inokuti, M., et al.: General use of the Lagrange multiplier in non-linear mathematical physics (1978) Google Scholar
  63. Jalaal, M., Ghasemi, E., Ganji, D.D.: Effect of temperature dependency of surface emissivity on heat transfer using the parameterized perturbation method. Ther. Sci. 15, S123–S125 (2011)Google Scholar
  64. Jamshidi, N., Ganji, D.D.: Application of energy balance method and variational iteration method to an oscillation of a mass attached to a stretched elastic wire. Curr. Appl. Phys. (in press, Corrected Proof, Available online 9 July 2009) Google Scholar
  65. Kachapi, S.H.A.H., Barari, A., Tolou, N., Ganji, D.D.: Solution of strongly nonlinear oscillation systems using variational approach. J. Appl. Funct. Anal. 4(3), 528–535 (2009a)Google Scholar
  66. Kachapi, S.H.H., Ganji, D.D., Davodi, A.G., Varedi, S.M.: Periodic solution for strongly nonlinear vibration systems by He’s variational iteration method. Math. Meth. Appl. Sci. 32, 2339–2349 (2009b)Google Scholar
  67. Kachapi, S.H.H., Dukkipati, R.V., Hashemi S.G.K., Hashemi, S.M.K.: Analysis of the nonlinear vibration of a two-mass-spring system with linear and nonlinear stiffness. Nonlinear Anal. Real World Appl. 11, 1431–1441 (2010)Google Scholar
  68. Kachapi, S.H.H., Ganji, D.D.: Analytical and Numerical Methods in Engineering and Applied Sciences, Progress in Nonlinear Science, vol. 3, pp. 1–579. Asian Academic Publisher Limited, Hong Kong (2011)Google Scholar
  69. Kachapi, S.H.H., Ganji, D.D.: Nonlinear Analysis in Science and Engineering. Cambridge International Science Publisher, Cambridge (in press, 2013a)Google Scholar
  70. Kachapi, S.H.H., Ganji, D.D.: Nonlinear Differential Equations: Analytical Methods and Application. Cambridge International Science Publisher associated with Springer (in press, 2013b)Google Scholar
  71. Kimiaeifar, A., Saidi, A.R., Bagheri, G.H., Rahimpour, M., Domairry, D.G.: Analytical solution for Van der Pol–Duffing oscillators. Chaos, Solitons Fractals 42(5), 2660–2666 (2009)zbMATHCrossRefGoogle Scholar
  72. Mehdipour, I., Ganji, D.D., Mozaffari, M.: Application of the energy balance method to nonlinear vibrating equations. Curr. Appl. Phys. (in press, Corrected Proof, Available online 23 May 2009)Google Scholar
  73. Momani, S., Odibat, Z.: Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order. Chaos, Solitons & Fractals (2006) Google Scholar
  74. Naghipour, M., Ganji, D.D., Hashemi, S.H., Jafari, H.: Analysis of nonlinear oscillation systems using He’s variational approach. J. Phy. Conf. Ser. 96, 012077 (2008)CrossRefGoogle Scholar
  75. Pashaei, M.H., Ganji, D.D., Akbarzade, M.: Application of the energy balance method for strongly nonlinear oscillators. Prog. Electromagn. Res. M 2, 47–56 (2008)CrossRefGoogle Scholar
  76. Rafei, M., Ganji, D.D., Daniali, H., Pashaei, H.: The variational iteration method for nonlinear oscillators with discontinuities. J. Sound Vib. 305(4-5), 614–620 (2007a)Google Scholar
  77. Rafei, M., Ganji, D.D., Mohammadi Daniali, H.R., Pashaei, H.: Application of homotopy perturbation method to the RLW and generalized modified oussinesq equations. Phys. Lett. A 364(1), 1–6 (2007b)Google Scholar
  78. Rafei, M., Reza, H., Daniali, M., Ganji, D.D.: Variational iteration method for solving the epidemic model and the prey and predator problem. Appl. Math. Comput. 186(2), 1701–1709 (2007c)MathSciNetzbMATHCrossRefGoogle Scholar
  79. Rafei, M., Ganji, D.D., Reza, H., Daniali, M.: Solution of the epidemic model by homotopy perturbation method. Appl. Math. Comput. 187(2), 1056–1062 (2007d)MathSciNetzbMATHCrossRefGoogle Scholar
  80. Shou, D.-H., He, J.-H.: Coupled nonlinear oscillator arising in two-strand yarn spinning. J. Phys: Conf. Ser. 96, 012126 (2008)CrossRefGoogle Scholar
  81. Tolou, N., Kachapi, S.H.H., Barari, A., Ganji, D.D.: Analytical investigation of strongly nonlinear normal mode using homotopy perturbation method and He’s Variational Method. J. Appl. Funct. Anal. 4(4), 682–690 (2009)Google Scholar
  82. Varedi, S.M., Hosseini, M.J., Rahimi, M., Ganji, D.D.: He’s variational iteration method for solving a semi-linear inverse parabolic equation. Phys. Lett. A 370(3–4), 275–280 (2007)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2014

Authors and Affiliations

  • Sayyid Habibollah HashemiKachapi
    • 1
    Email author
  • Davood DomairryGanji
    • 1
  1. 1.Department of Mechanical EngineeringBabol University of TechnologyBabolIran

Personalised recommendations