Skip to main content

Techniques for the Modelling of the Process Systems in Slow and Fast-Moving Landslides

  • Chapter
  • First Online:
Mountain Risks: From Prediction to Management and Governance

Abstract

This chapter reviews some of the current strategies for landslide modelling. Main physical processes in landslides are first recalled. Numerical tools are then introduced for the analysis of the behaviour of slow- and fast-moving landslides. Representative case studies are introduced through the chapter to highlight how different modelling strategies can be used depending on the physical processes that the modeller wants to take into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

H:

Hydraulic

H-M:

Hydro-Mechanical

CL:

Silty clay

References

  • Abramson LW, Lee TS, Sharma S, Boyce GM (2002) Slope stability and stabilisation methods, 2nd edn. Wiley, New York

    Google Scholar 

  • Alonso EE, Gens A, Lloret A (1993) The landslide of Cortes de Pallas, Spain. Géotechnique 43(4):507–521

    Article  Google Scholar 

  • Alonso EE, Gens A, Delahaye CH (2003) Influence of rainfall on the deformation and stability of a slope in over consolidated clays: a case study. Hydrogeol J 11:174–192

    Article  Google Scholar 

  • Anderson SP, Dietrich WE, Montgomery DR (1997) Subsurface flow paths in steep, unchanneled catchments. Water Resour Res 33(12):2637–2653

    Article  Google Scholar 

  • Begueria S, van Asch TWJ, Malet J-P, Grondahl S (2009) A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat Hazard Earth Syst Sci 9:1897–1909

    Article  Google Scholar 

  • Biot MA (1956) General solution of the equations of elasticity and consolidation for a porous material. J Appl Mech 19:91–96

    Google Scholar 

  • Bjerrum L (1967) Progressive failure in slopes in over consolidated plastic clay and clay shales. ASCE J Soil Mech Found Div 93(5):3–49

    Google Scholar 

  • Bogaard TA (2001) Analysis of hydrological processes in unstable clayey slopes. PhD thesis, University of Utrecht, Utrecht

    Google Scholar 

  • Bogaard TA, van Asch TWJ (2002) The role of the soil moisture balance in the unsaturated zone on movement and stability of the Beline landslide, France. Earth Surf Process Landf 27:1177–1188

    Article  Google Scholar 

  • Cascini L, Cuomo S, Pastor M, Sorbino G (2010) Modeling of rainfall-induced shallow landslides of the flow-type. ASCE J Geotech Geoenviron Eng 136(1):85–98

    Article  Google Scholar 

  • Castelli M, Scavia C, Bonnard C, Laloui L (2009) Mechanics and velocity of large landslides, preface. Eng Geol 109(1–2):1–4

    Article  Google Scholar 

  • Christen M, Kowalski J, Bartelt P (2010) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1–14

    Article  Google Scholar 

  • Comegna L, Picarelli L, Urciuoli G (2007) The mechanics of mudslides as a cyclic undrained-drained process. Landslides 4(3):217–232

    Article  Google Scholar 

  • Corominas J, Moya J, Ledesma A, Lloret A, Gili JA (2005) Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2:83–96. doi:10.1007/s10346-005-0049-1

    Article  Google Scholar 

  • Coussot P (1997) Mudflow rheology and dynamics. IAHR monograph. Balkema, Rotterdam

    Google Scholar 

  • Crosta GB, Dal Negro P (2003) Observations and modeling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event. Nat Hazard Earth Syst Sci 3:53–69

    Article  Google Scholar 

  • Crozier MJ (2005) Multiple-occurrence regional landslide events in New Zealand: hazard management issues. Landslides 2:247–256

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. National Academy Press, Washington, DC

    Google Scholar 

  • Dai FC, Lee CF, Sijing W (1999) Analysis of rainstorm-induced slide-debris flows on a natural terrain of Lantau Island, Hong Kong. Eng Geol 51:279–290

    Article  Google Scholar 

  • De Montety V, Marc V, Emblanch C, Malet J-P, Bertrand C, Maquaire O, Bogaard TA (2007) Identifying the origin of groundwater and flow processes in complex landslides affecting black marls: insights from a hydrochemical survey. Earth Surf Process Landf 32:32–48

    Article  Google Scholar 

  • Dounias GT, Potts DM, Vaughan PR (1988) Finite element analyses of progressive failure: two case studies. Comput Geotech 6:155–175

    Article  Google Scholar 

  • Duncan JM, Wright SG (2005) Soil strength and slope stability. Wiley, Chichester

    Google Scholar 

  • Eberhardt E, Thuro K, Luginbuehl M (2005) Slope instability mechanisms in dipping interbedded conglomerates and weathered marls—the 1999 Rufi landslide, Switzerland. Eng Geol 77(1):35–56

    Article  Google Scholar 

  • Eckersley JD (1990) Instrumented laboratory flowslides. Géotechnique 40:489–502

    Article  Google Scholar 

  • Ferrari A, Laloui L, Bonnard C (2009) Hydro-mechanical modelling of a natural slope affected by a multiple slip surface failure mechanism. Comput Model Eng Sci 52(3):217–235

    Google Scholar 

  • Ferrari A, Ledesma A, González D, Corominas J (2011) Effects of the foot evolution on the behaviour of slow-moving landslides. Eng Geol 117:217–228

    Article  Google Scholar 

  • Fourie AB, Rowe D, Blight GE (1999) The effect of infiltration on the stability of the slopes of a dry ash dump. Géotechnique 49(1):1–13

    Article  Google Scholar 

  • François B, Tacher L, Bonnard C, Laloui L, Triguero V (2007) Numerical modelling of the hydrogeological and geomechanical behaviour of a large slope movement: the Triesenberg landslide (Liechtenstein). Can Geotech J 44:840–857

    Article  Google Scholar 

  • Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley, Chichester

    Book  Google Scholar 

  • Godt JW, Baum RL, Lu N (2009) Landsliding in partially saturated materials. Geophys Res Lett 36(L02403):1–5

    Google Scholar 

  • Harr RD (1981) Some characteristics and consequences of snowmelt during rainfall in Western Oregon. J Hydrol 53:277–304

    Article  Google Scholar 

  • Hungr O (1995) A model for the run-out analysis of rapid flow slides, debris flows and avalanches. Can Geotech J 32:610–623

    Article  Google Scholar 

  • Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Comput Geosci 35:978–992

    Article  Google Scholar 

  • Hürlimann M, Medina V, Bateman A, Copons R, Altimir J (2007) Comparison of different techniques to analyse the mobility of debris flows during hazard assessment. Case study in La Comella catchment, Andorra. In: Chen C-l, Major JJ (eds) Debris-flow hazard mitigation: mechanics, prediction and assessment. Mill Press, Rotterdam

    Google Scholar 

  • Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain. 1. Numerical predictions and experimental tests. J Geophys Res 106:553–566

    Article  Google Scholar 

  • Iverson RM, Reid ME, LaHusen RG (1997) Debris-flow mobilization from landslides. Annu Rev Earth Planet Sci 25:85–138

    Article  Google Scholar 

  • Johnson KA, Sitar N (1990) Hydrologic conditions leading to debris-flow initiation. Can Geotech J 27:789–801

    Article  Google Scholar 

  • Karssenberg D, Burrough PA, Sluiter R, de Jong K (2001) The PCRaster software and course materials for teaching numerical modelling in the environmental sciences. Trans GIS 5(2):99–110

    Article  Google Scholar 

  • Krzeminska DM, Bogaard TA, Van Asch TWJ, Van Beek LPH (2012) A conceptual model of the hydrological influence of fissures on landslide activity. Hydrol Earth Syst Sci 16:1–16

    Article  Google Scholar 

  • Krzeminska DM, Bogaard TA, Malet J-P, Van Beek LPH (2013) A model of hydrological and mechanical feedbacks of preferential fissure flow in a slow-moving landslide. Hydrol Earth Syst Sci 17(3):947–959

    Article  Google Scholar 

  • Kuriakose SL (2010) Physically-based dynamic modelling of the effect of land use changes on shallow landslide initiation in the Western Ghats of Kerala. PhD thesis, University of Twente, Faculty of Geo-Information and Earth Observation ITC, Enschede, ITC dissertation 178, ISBN: 978-90-6164-298-5

    Google Scholar 

  • Laloui L, Klubertanz G, Vulliet L (2003) Solid–liquid-air coupling in multiphase porous media. Int J Numer Anal Methods Geomech 27(3):183–206

    Article  Google Scholar 

  • Laloui L, Nuth M (2009) On the use of the generalised effective stress in the constitutive modelling of unsaturated soils. Comput Geotech 36(1–2):20–23

    Article  Google Scholar 

  • Ledesma A, Corominas J, González A, Ferrari A (2009) Modelling slow moving landslides controlled by rainfall. In: Picarelli L, Tommasi P, Urciuoli G, Versace P (eds) The first Italian Workshop on Landslides (IWL), rainfall-induced landslides – mechanisms, monitoring techniques and nowcasting models for early warning systems, vol 1. Naples

    Google Scholar 

  • Macfarlane DF (2009) Observations and predictions of the behaviour of large, slow-moving landslides in schist, Clyde Dam reservoir, New Zealand. Eng Geol 109(1–2):5–15

    Article  Google Scholar 

  • Malet J-P (2003) Les glissements de type ecoulement dans les marnes noires des Alpes du Sud. Morphologie, fonctionnement et modélisation hydromécanique. PhD thesis in Earth Sciences, Université Louis Pasteur, Strasbourg

    Google Scholar 

  • Malet J-P, Van Asch TWJ, Van Beek LPH, Maquaire O (2005) Forecasting the behaviour of complex landslides with a spatially distributed hydrological model. Nat Hazard Earth Syst Sci 5:71–85

    Article  Google Scholar 

  • Mangeney A, Bouchut F, Thomas N, Vilotte JP, Bristeau MO (2007) Numerical modeling of self-channeling granular flows and of their levee-channel deposits. J Geophys Res 112:F02017. doi:10.1029/2006JF69

    Article  Google Scholar 

  • Maquaire O, Malet JP, Remaître A, Locat J, Klotz S, Guillon J (2003) Instability conditions of marly hillslopes: towards landsliding or gullying? The case of the Barcelonnette Basin, South East France. Eng Geol 70:109–130

    Article  Google Scholar 

  • McDonnell JJ (1990) The influence of macropores on debris flow initiation. Q J Eng Geol Hydrogeol 23:325–331. doi:10.1144/GSL.QJEG.1990.023.04.06

    Article  Google Scholar 

  • McDougall S (2006) A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain. PhD thesis, The University of British Columbia, Vancouver

    Google Scholar 

  • McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41(12):1084–1097

    Article  Google Scholar 

  • McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42:1437–1448

    Article  Google Scholar 

  • Moser M, Hohensinn F (1983) Geotechnical aspects of soil slips in alpine regions. Eng Geol 19:185–211

    Article  Google Scholar 

  • Naef D, Rickenmann D, Rutschmann P, McArdell BW (2006) Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Nat Hazard Earth Syst Sci 6:155–165

    Article  Google Scholar 

  • Nieber JL, Sidle RC (2010) How do disconnected macropores in sloping soils facilitate preferential flow. Hydrol Process 24:1582–1594. doi:10.1002/hyp.7633

    Article  Google Scholar 

  • Nuth M, Laloui L (2008) Effective stress concept in unsaturated soils: clarification and validation of a unified framework. Int J Numer Anal Methods Geomech 32:771–801

    Article  Google Scholar 

  • O’Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng 119(2):244–261

    Article  Google Scholar 

  • Olivares L, Damiano E (2007) Postfailure mechanics of landslides: laboratory investigation of flowslides in pyroclastic soils. J Geotech Geoenviron Eng 133(1):51–62

    Article  Google Scholar 

  • Picarelli L, Urciuoli G, Russo C (2004) Effect of groundwater regime on the behaviour of clayey slopes. Can Geotech J 41:467–484

    Article  Google Scholar 

  • Picarelli L, Olivares L, Comegna L, Damiano E (2008) Mechanical aspects of flow-like movements in granular and fine grained soils. Rock Mech Rock Eng 41(1):179–197

    Article  Google Scholar 

  • Potts DM, Kovacevic N, Vaughen PR (1997) Delayed collapse of cut slopes in stiff clay. Géotechnique 47(5):953–982

    Article  Google Scholar 

  • Rahardjo H, Aung KK, Leong EC, Rezaur RB (2004) Characteristics of residual soils in Singapore as formed by weathering. Eng Geol 73:157–169

    Article  Google Scholar 

  • Ranalli M, Gottardi G, Medina-Cetina Z, Nadim F (2010) Uncertainty quantification in the calibration of a dynamic viscoplastic model of slow slope movements. Landslides 41:31–41

    Article  Google Scholar 

  • Rickenmann D, Laigle D, McArdell BW, Hübl J (2006) Comparison of 2D debris-flow simulation models with field events. Comput Geosci 10:241–264

    Article  Google Scholar 

  • Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215

    Article  Google Scholar 

  • Sidle RC, Tsuboyama Y, Noguchi S, Hosada I, Fujieda M, Shimizu T (2002) Stormflow generation in steep forested headwaters: a linked hydrogeomorphic paradigm. Hydrol Process 14:369–385

    Article  Google Scholar 

  • Skempton AW (1964) 4th Rankine Lecture: long term stability of clay slopes. Géotechnique 14(2):77–101

    Article  Google Scholar 

  • Spence KJ, Guymer I (1997) Small-scale laboratory flowslides. Géotechnique 47:915–922

    Article  Google Scholar 

  • Springman SM, Jommi C, Teysseire P (2003) Instabilities on moraine slopes induced by loss of suction: a case history. Géotechnique 53(1):3–10

    Article  Google Scholar 

  • Tacher L, Bonnard C, Laloui L, Parriaux A (2005) Modelling the behaviour of a large landslide with respect to hydrogeological and geomechanical parameter heterogeneity. Landslides J 2(1):3–14

    Article  Google Scholar 

  • Travelletti, J., Malet, J.-P. (2012). Characterization of the 3D geometry of flow-like land slides: a methodology based on the integration of multi-source data. Eng Geol 128:30–48, http://dx.doi.org/10.1016/j.enggeo.2011.05.003

  • Travelletti J, Delacourt C, Allemand P, Malet J-P, Schmittbuhl J, Toussaint R, Bastard M (2012) Correlation of multi-temporal ground-based optical images for landslide monitoring: application, potential and limitations. ISPRS J Photogramm Remote Sens 70:39–55. doi:10.1016/j.isprsjprs.2012.03.007

    Article  Google Scholar 

  • Tsuboyama Y, Sidle RC, Noguchi S, Hosada I (1994) Flow and transport through the soil matrix and macropores of a hillslope segment. Water Resour Res 30(4):879–890

    Article  Google Scholar 

  • Uchida T, Kosugi K, Mizuyama T (2001) Effects of pipe flow on he hydrological process and its relation to landslides: a review of pipe flow studies in forested headwater catchments. Hydrol Process 15:2151–2174

    Article  Google Scholar 

  • Van Asch TWJ, Van Genuchten PMB (1990) A comparison between theoretical and measured creep profiles of landslides. Geomorphology 3:45–55

    Article  Google Scholar 

  • Van Asch TWJ, Hendriks MR, Hessel R, Rappange FE (1996) Hydrological triggering conditions of landslides in varved clays in the French Alps. Eng Geol 42:239–251

    Article  Google Scholar 

  • Van Asch TWJ, Malet J-P, Van Beek LPH (2006) Influence of landslide geometry and kinematic deformation to describe the liquefaction of landslides: some theoretical considerations. Eng Geol 88:59–69. doi:10.1016/j.enggeo.2006.08.002

    Article  Google Scholar 

  • Van Asch TWJ, Van Beek LPH, Bogaard TA (2007a) Problems in predicting the mobility of slow-moving landslides. Eng Geol 91(1):46–55

    Article  Google Scholar 

  • Van Asch TWJ, Malet J-P, Van Beek LPH, Amitrano D (2007b) Techniques, issues and advances in numerical modelling of landslide hazard. Bull Soc Géol Fr 178(2):65–88

    Google Scholar 

  • Van Beek LPH (2002) Assessment of the influence of changes in land use and climate on landslide activity in a Mediterranean environment. PhD thesis, University of Utrecht, Utrecht

    Google Scholar 

  • Van Beek LPH, Van Asch TWJ (1999) A combined conceptual model for the effects of fissure-induced infiltration on slope stability. In: Process modelling and landform evolution. Lecture Notes Earth Sci 78:147–167. doi:10.1007/BFb0009716

    Article  Google Scholar 

  • Van Genuchten MT (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation – why is it still so difficult? Bull Eng Geol Environ 65:167–184

    Article  Google Scholar 

  • Voellmy A (1955) Uber die Zerstorunskraft von Lawinen (On breaking force of avalanches). Schweiz Bauztg 73:212–285

    Google Scholar 

  • Vulliet L (2000) Natural slopes in slow movement. In: Zaman G, Gioda G, Booker J (eds) Modeling in geomechanics. Wiley, Chichester

    Google Scholar 

  • Wang G, Sassa K (2001) Factors affecting rainfall-induced landslides in laboratory flume tests. Géotechnique 51(7):587–599

    Article  Google Scholar 

  • WP-WLI (1995) A suggested method for describing the rate of movement of a landslide. Bull Int Assoc Eng Geol 52(1):75–78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Ferrari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ferrari, A. et al. (2014). Techniques for the Modelling of the Process Systems in Slow and Fast-Moving Landslides. In: Van Asch, T., Corominas, J., Greiving, S., Malet, JP., Sterlacchini, S. (eds) Mountain Risks: From Prediction to Management and Governance. Advances in Natural and Technological Hazards Research, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6769-0_4

Download citation

Publish with us

Policies and ethics