Skip to main content

Innovative Techniques for the Detection and Characterization of the Kinematics of Slow-Moving Landslides

  • Chapter
  • First Online:
Mountain Risks: From Prediction to Management and Governance

Abstract

Remote sensing has been proven useful for landslide studies. However, conventional remote sensing techniques based on aerial photographs and optical imageries seem to be more suitable for detecting and characterizing rapid-moving landslides. This section introduces several innovative remote sensing techniques aiming at the characterization of the kinematics (e.g. displacement pattern, deformation, strain) of slow- to moderate-moving landslides. These methods include Persistent Scatterers Interferometry (PSI), automatic surveying using total station integrated with GPS, Ground-Based Synthetic Aperture Radar Interferometry (GB-InSAR), image correlation of catalogues of optical photographs (TOP) and Terrestrial Laser Scanner (TLS) point clouds. Three case studies, including the Arno river basin (Italy), the Valoria landslide (Italy) and the Super-Sauze landslide (France) are presented in order to highlight the usefulness of these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALS:

Airborne Laser Scanner

CPT:

Coherent Pixels Technique

DInSAR:

Differential InSAR

EW:

Early Warning

GB-InSAR:

Ground-based Synthetic Aperture Radar Interferometry

IPTA:

Interferometric Point Target Analysis

LOS:

Line-of-Sight

PS:

Persistent Scatterers

PSI:

Persistent Scatterers Interferometry

InSAR:

SAR Interferometry

SBAS:

Small Baseline Subset

SPN:

Stable Point Network

StaMPS:

Stanford Method for Persistent Scatterers

TLS:

Terrestrial Laser Scanner

TOP:

Terrestrial Optical Photogrammetry

DEM:

Digital Elevation Model

GPS:

Global Positioning System

References

  • Abellán A, Jaboyedoff M, Oppikoffer T, Vilaplana JM (2009) Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Nat Hazard Earth Syst Sci 9:365–372

    Article  Google Scholar 

  • Antonello G, Casagli N, Farina P, Leva D, Nico G, Sieber AJ, Tarchi D (2004) Ground-based SAR interferometry for monitoring mass movements. Landslides 1:21–28

    Article  Google Scholar 

  • Avian M, Kellerer-Pirklbauer A, Bauer A (2009) LiDAR for monitoring mass movements in permafrost environments at the cirque Hinteres Langtal, Austria, between 2000 and 2008. Nat Hazard Earth Syst Sci 9:1087–1094

    Article  Google Scholar 

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential sar interferograms. IEEE Trans Geosci Remote Sens 40:2375–2383

    Article  Google Scholar 

  • Blanco-Sanchez P, Mallorqui JJ, Duque S, Monells D (2008) The coherent pixels technique (cpt): an advanced dInSAR technique for nonlinear deformation monitoring. Pure Appl Geophys 165(6):1167–1193

    Article  Google Scholar 

  • Brunner F, Macheiner K, Woschitz H (2007) Monitoring of deep-seated mass movements. In: Proceedings of the 3rd international conference on structural health monitoring of intelligent infra-structure (SHMII-3), Vancouver, 13–16 November, 7p (on CDROM)

    Google Scholar 

  • Casagli N, Farina P, Leva D, Tarchi D (2004) Application of ground-based radar interferome-try to monitor an active rock slide and implications on the emergency management. In: Evans SG, Scarascia-Mugnozza G, Strom A, Hermanns RL (eds) Landslides from massive rock slope failure, Proceedings of the NATO Advanced Research Workshop on Massive Rock Slope Failure – New Models for Hazard Assessment, Springer, Celano/Berlin, 16–21 June, pp 351–360

    Google Scholar 

  • Casson B, Baratoux D, Delacourt D, Allemand P (2003) “La Clapière” landslide motion observed from aerial differential high resolution DEM. Eng Geol 68:123–139

    Article  Google Scholar 

  • Casson B, Delacourt C, Allemand P (2005) Contribution of multi-temporal sensing images to characterize landslide slip surface – application to the La Clapière landslide (France). Nat Hazard Earth Syst Sci 5:425–437

    Article  Google Scholar 

  • Casu F, Manzo M, Lanari R (2006) A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens Environ 102:195–210

    Google Scholar 

  • Catani F, Casagli N, Ermini L, Righini G, Menduni G (2005) Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides 2:329–342

    Article  Google Scholar 

  • Colesanti C, Ferretti A, Prati C, Rocca F (2003) Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Eng Geol 68:3–14

    Article  Google Scholar 

  • Corsini A, Farina P, Antonello G, Barbieri M, Casagli N, Coren F, Guerri L, Ronchetti F, Sterzai P, Tarchi D (2006) Space-borne and ground-based SAR interferometry as tools for landslide hazard management in civil protection. Int J Remote Sens 27:2351–2369

    Article  Google Scholar 

  • Corsini A, Borgatti L, Cervi F, Daehne A, Ronchetti F, Sterzai P (2009) Estimating mass-wasting processes in active earth slides–earth flows with time-series of High-Resolution DEMs from photogrammetry and airborne LiDAR. Nat Hazard Earth Syst Sci 9:433–439

    Article  Google Scholar 

  • Crosetto M, Monserrat O, Iglesias R, Crippa B (2010) Persistent scatterer interferometry: potential, limits and initial c- and x-band comparison. Photogramm Eng Remote Sens 76(9):1061–1069

    Google Scholar 

  • Debella-Gilo M, Kääb A (2010) Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation. Remote Sens Environ 115:130–142

    Article  Google Scholar 

  • Delacourt C, Allemand P, Casson B, Vadon H (2004) Velocity field of the “La Clapière” landslide measured by the correlation of aerial and Quick-Bird satellite images. Geophys Res Lett 31:1–5

    Article  Google Scholar 

  • Delacourt C, Allemand P, Berthier E, Raucoules D, Casson B, Grandjean P, Pambrun C, Varel E (2007) Remote-sensing techniques for analysing landslide kinematics: a review. Bull Soc Géologique Fr 178(2):89–100

    Article  Google Scholar 

  • Duro J, Inglada J, Closa J, Adam N, Arnaud A (2003) High resolution differential interferometry using times series of ers and envisat sar data. In: Proceedings of the FRINGE 2003, ESRIN, Frascati, 1–5 December 2003

    Google Scholar 

  • Farina P, Colombo D, Fumagalli A, Marks F, Moretti S (2006) Permanent Scatterers for landslide investigations: outcomes from the ESA-SLAM project. Eng Geol 88:200–217

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39:8–20

    Article  Google Scholar 

  • Foppe K, Barth W, Preis S (2006) Autonomous permanent automatic monitoring system with robot-tacheometers. In: Proceedings of the XXIII international FIG congress ‘Shaping the Change’ (FIG-2006), Münich, 8–13 October, 12 p (on CDROM)

    Google Scholar 

  • Fruneau B, Achache J, Delacourt C (1996) Observation and modelling of the Saint-Etienne-de-Tinée landslide using SAR Interferometry. Tectonophysics 265:181–190

    Article  Google Scholar 

  • Gens R, Van Genderen JL (1996) SAR interferometry – issues, techniques, applications. Int J Remote Sens 17(10):1803–1835

    Article  Google Scholar 

  • Getis A, Ord JK (1996) Local spatial statistics: an overview. In: Longley P, Batty M (eds) Spatial analysis: modeling in a GIS environment. Wiley, New York, p 261

    Google Scholar 

  • Goodchild MF (2010) Crowdsourcing geographic information for disaster response: a research frontier. Int J Digital Earth 3(3):231–241

    Article  Google Scholar 

  • Heipke C (2010) Crowdsourcing geospatial data. ISPRS J Photogramm Remote Sens 65(6):550–557

    Article  Google Scholar 

  • Hervás J, Bobrowsky P (2009) Mapping: inventories, susceptibility, hazard and risk. In: Sassa K, Canuti P (eds) Landslides – disaster risk reduction. Springer, Berlin/Heidelberg

    Google Scholar 

  • Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31:L23611

    Article  Google Scholar 

  • Hooper A, Segall P, Zebker H (2007) Persistent Scatterer InSAR for crustal deformation analysis, with application to Volcan Alcedo. Galapagos J Geophys Res 112:B07407

    Article  Google Scholar 

  • Jaboyedoff M, Ornstein P, Rouiller JD (2004) Design of a geodetic database and associated tools for monitoring rock-slope movements: the example of the top of Randa rockfall scar. Nat Hazard Earth Syst Sci 4:187–196

    Article  Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abellan A, Derron MH, Loye A, Metzger R, Pedrazzini A (2010) Use of LiDAR in landslide investigations: a review. Nat Hazard 2010:1–24. doi:10.1007/s11069-010-9634-2

    Google Scholar 

  • Kraus K, Waldhäusl P (1994) Photogrammetry, fundamentals and standard processes, vol 1. Hermès (ed), Paris

    Google Scholar 

  • Lanari R, Mora O, Manunta M, Mallorqui JJ, Berardino P, Sansosti E (2004) A small-baseline approach for investigating deformations on full-resolution differential sar interferograms. IEEE Trans Geosci Remote Sens 42:1377–1386

    Article  Google Scholar 

  • LePrince S, Berthier E, Ayoub F, Delacourt C, Avouac JP (2008) Monitoring earth surface dynamics with optical imagery. Eos Trans Am Geophys Union 89:1–5

    Article  Google Scholar 

  • Lewis JP (1995) Fast normalized cross-correlation. Vis Interface 95:120–123

    Google Scholar 

  • Lu P, Casagli N, Catani F (2010) PSI-HSR: a new approach for representing Persistent Scatterer Interferometry (PSI) point targets using the hue and saturation scale. Int J Remote Sens 31(8):2189–2196

    Article  Google Scholar 

  • Lu P, Stumpf A, Kerle N, Casagli N (2011) Object-oriented change detection for landslide rapid mapping. IEEE Geosci Remote Sens Lett 8(4):701–705

    Article  Google Scholar 

  • Lu P, Casagli N, Catani F, Tofani V (2012) Persistent Scatterers Interferometry Hotspot and Cluster Analysis (PSI-HCA) for detection of extremely slow-moving landslides. Int J Remote Sens 33(2):466–489

    Article  Google Scholar 

  • Malet JP, Maquaire O, Calais E (2002) The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology 43(1–2):33–54

    Article  Google Scholar 

  • Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the earth’s surface. Rev Geophys 36(4):441–500

    Article  Google Scholar 

  • Mora O, Mallorqui JJ, Broquetas A (2003) Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans Geosci Remote Sens 41:2243–2253

    Article  Google Scholar 

  • Naterop D, Yeatman R (1995) Automatic measuring system for permanent monitoring: Solexperts Geomonitor. In: Proceedings of the 4th international symposium on field measurements in geomechanics (FMGM-1995), Bergamo, 18–23 April, pp 417–424

    Google Scholar 

  • Oppikofer T, Jaboyedoff M, Kreusen HR (2008) Collapse at the eastern Eiger flank in the Swiss Alps. Nat Geosci 1(8):531–535

    Article  Google Scholar 

  • Oppikofer T, Jaboyedoff M, Blikra LH, Derron MH, Metzger R (2009) Characterization and monitoring of the Aknes rockslide using terrestrial laser scanning. Nat Hazard Earth Syst Sci 9:1003–1019

    Article  Google Scholar 

  • Petley DN (2004) The evolution of slope failures: mechanisms of rupture propagation. Nat Hazard Earth Syst Sci 4:147–152

    Article  Google Scholar 

  • Petley DN, Higuchi T, Petley DJ, Bulmer MH, Carey J (2005a) Development of progressive landslide failure in cohesive materials. Geology 33:201

    Article  Google Scholar 

  • Petley DN, Mantovani F, Bulmer MH, Zannoni A (2005b) The use of surface monitoring data for the interpretation of landslide movement patterns. Geomorphology 66:133–147

    Article  Google Scholar 

  • Ronchetti F, Borgatti L, Cervi F, Lucente C, Veneziano M, Corsini A (2007) The Valoria landslide reactivation in 2005–2006 (Northern Apennines, Italy). Landslides 4:189–195

    Article  Google Scholar 

  • Rosen PA, Hensley S, Joughin IR, Li K, Madsen SN, Rodriguez E, Goldstein RM (2000) Synthetic aperture radar interferometry. Proc IEEE 88(3):333–382

    Article  Google Scholar 

  • Silverman BW(1986) Density estimation for statistics and data analysis. In: Monographs on Statistics and Applied Probability 26. Chapman & Hall/CRC, London. ISBN 0412246201, 9780412246203

    Google Scholar 

  • Singhroy V, Mattar KE, Gray L (1998) Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images. Adv Space Res 21:465–476

    Article  Google Scholar 

  • Squarzoni C, Delacourt C, Allemand P (2005) Differential single-frequency GPS monitoring of the La Valette landslide (French Alps). Eng Geol 79(3–4):215–229

    Article  Google Scholar 

  • Strozzi T, Farina P, Corsini A, Ambrosi C, Thüring M, Zilger J, Wiesmann A, Wegmüller U, Werner C (2005) Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2:193–201

    Article  Google Scholar 

  • Strozzi T, Wegnuller U, Keusen HR, Graf K, Wiesmann A (2006) Analysis of the terrain displacement along a funicular by SAR interferometry. IEEE Geosci Remote Sens Lett 3:15–18

    Article  Google Scholar 

  • Tarchi D, Casagli N, Fanti R, Leva DD, Luzi G, Pasuto A, Pieraccini M, Silvano S (2003) Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Eng Geol 68:15–30

    Article  Google Scholar 

  • Teza G, Pesci A, Genevois R, Galgaro A (2008) Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation. Geomorphology 97(3–4):424–437

    Article  Google Scholar 

  • Travelletti J, Malet JP, Delacourt C (in review) Multi-date correlation of terrestrial laser scanning data for the characterization of landslide kinematics. Submitted to Geomorphology

    Google Scholar 

  • Travelletti J, Delacourt C, Allemand P, Malet JP, Schmittbuhl J, Toussaint R, Bastard M (2012) Correlation of multi-temporal ground-based images for landslide monitoring: application, potential and limitations. ISPRS J Photogramm Remote Sens 70:39–55

    Article  Google Scholar 

  • Tucker GE, Catani F, Rinaldo A, Bras RL (2005) Statistical analysis of drainage density from digital terrain data. Geomorphology 36:187–202

    Article  Google Scholar 

  • Werner C, Wegmuller U, Strozzi T, Wiesmann A (2003) Interferometric point target analysis for deformation mapping. In: Proceedings of the IGARSS 2003, Toulouse, 21–25 July 2003, pp 4362–4364

    Google Scholar 

  • Xia Y, Kaufmann H, Guo XF (2004) Landslide monitoring in the Three Gorges area using D-InSAR and corner reflectors. Photogramm Eng Remote Sens 70:1167–1172

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lu, P., Daehne, A., Travelletti, J., Casagli, N., Corsini, A., Malet, JP. (2014). Innovative Techniques for the Detection and Characterization of the Kinematics of Slow-Moving Landslides. In: Van Asch, T., Corominas, J., Greiving, S., Malet, JP., Sterlacchini, S. (eds) Mountain Risks: From Prediction to Management and Governance. Advances in Natural and Technological Hazards Research, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6769-0_2

Download citation

Publish with us

Policies and ethics