Skip to main content

The Use of Geo-information and Modern Visualization Tools for Risk Communication

  • Chapter
  • First Online:
Mountain Risks: From Prediction to Management and Governance

Part of the book series: Advances in Natural and Technological Hazards Research ((NTHR,volume 34))

Abstract

Clear communication of information is a compulsory issue in disaster risk management. This section highlights the development of interactive tools to constantly present the most recent geo-database with multi-scale and multi-source approaches, and user-oriented graphical interfaces for simple and quick data management. A client-server structure is used to customize geo-data accessibility rights and interaction and a WebGIS service architecture is designed to offer data accessibility and effective dissemination to the user community. Different solutions are presented using a common open source environment and interoperability plug-ins: (1) WebRiskCity is an educational kit on multi-hazard risk assessment, (2) Barcelonn@ supports risk management with interoperability on spatial data and metadata, (3) Historic@ is a prototype to spatially compare historical natural events and population trends, and (4) MultiRISK Visualisation Tool is a service to automatically publish multi-hazard risk analysis outcomes produced by the MultiRISK Modelling Tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    BE-SAFE-NET: http://www.besafenet.org/main/default.aspx

    Junior FLOODsite : http://www.floodsite.net/juniorfloodsite

    NIMS: www.fema.gov/emergency/nims/nims.shtm

    NOAA: http://www.ngdc.noaa.gov/hazard/

  2. 2.

    αPHRODITE: http://www.cimafoundation.org/aphrodite.php

    SICI: http://sici.irpi.cnr.it/

    UNISDR Training Toolkit http://www.uncclearn.org/unisdr-toolkit

    EDURISK: http://www.edurisk.it/eng/the-project.html

  3. 3.

    Mapserver: http://mapserver.org/

  4. 4.

    GNU licence: http://www.gnu.org/licenses/gpl.html

  5. 5.

    SOAP protocol: http://www.w3.org/TR/soap/

  6. 6.

    CartoWeb: http://www.cartoweb.org/

  7. 7.

    WebRiskCity: http://geoserver.itc.nl:8181/cartoweb3/WebRiskCity/WebRiskCity.html

  8. 8.

    Barcelonn@: http://eost.u-strasbg.fr/omiv/main-page.html

Abbreviations

DBMS:

Database Management System

XML:

eXtensible Markup Language

GIS:

Geographic Information System

GML:

Geography Markup Language

GNU GPL License:

GNU General Public License

HTML:

Hyper Text Markup Language

HTTP:

Hyper Text Transfer Protocol

OGC:

Open GIS Consortium

SOAP:

Simple Object Access Protocol

WebGIS:

Web-based GIS

Web:

World Wide Web

References

  • Balducci V, Tonelli G, Reichenbach P, Guzzetti F (2009) Webgis e dissesto idrogeologico. Paesaggio Urbano 1:18–22

    Google Scholar 

  • Blahut J, Poretti I, Sterlacchini S, De Amicis M (2012) Database of geo-hydrological disasters for civil protection purposes. Nat Hazards 60(3):1065–1083. doi:10.1007/s11069-011-9893-6

    Article  Google Scholar 

  • Boroushaki S, Malczewski J (2010) Measuring consensus for collaborative decision-making. A GIS-based approach. Comput Environ Urban 34(4):322–332

    Article  Google Scholar 

  • Brabhaharan P, Fleming MJ, Lynch R (2001) Natural hazard risk management for road networks. Part I: risk management strategies, Research report number 217. Transfund New Zealand, Wellington

    Google Scholar 

  • Burdziej J (2011) A web-based spatial decision support system for accessibility analysis – concepts and methods. Appl Geomat (3) Online First™, Springer Link. doi: 10.1007/s12518-011-0057-x

  • Castellanos Abella EA (2008) Multiscale landslide risk assessment in Cuba. Dissertation (154), Utrecht University, Utrecht, ITC. ISBN: 978-90-6164-268-8

    Google Scholar 

  • Comfort LK (2006) Cities at risk: Hurricane Katrina and the drowning of New Orleans. Urban Aff Rev 41(4):501–516

    Article  Google Scholar 

  • Comfort LK (2007) Crisis management in hindsight: cognition, communication, coordination, and control. Public Admin Rev 67(s1):189–197

    Article  Google Scholar 

  • Crosta GB, Dal Negro P, Frattini P (2003) Soil slips and debris flows on terraced slopes. Nat Hazards Earth Syst Sci 3:31–42

    Article  Google Scholar 

  • Davis T (2006) A failure of initiative, the final report of the select Bipartisan Committee to investigate the preparation for and response to Hurricane Katrina. Government Printing Office, Washington, DC. http://katrina.house.gov/full_katrina_report.htm. Accessed 25 Nov 2011

  • Dragićević S (2004) The potential of Web-based GIS. J Geogr Syst 6:79–81

    Article  Google Scholar 

  • Dragićević S, Shivanand B (2004) A web GIS collaborative framework to structure and manage distributed planning processes. J Geogr Syst 6(2):133–153

    Article  Google Scholar 

  • Evans A, Kingston R, Carver S, Turton I (1999) Web-based GIS to enhance public democratic involvement. GeoComputation ‘99, 24–28 July, Mary Washington College. http://virtualsociety.sbs.ox.ac.uk/reports/gis.htm

  • Fabrikant SI, Buttenfield BP (2001) Formalizing semantic spaces for information access. Ann Assoc Am Geogr 91:263–280

    Article  Google Scholar 

  • Fan-Chieh Y, Chien-Yuan C, Sheng-Chi L, Yu-Ching L, Shang-Yu W, Kei-Wai C (2007) Web-based decision support system for slopeland hazard warning. Environ Monit Assess 127:419–428

    Article  Google Scholar 

  • Frigerio S, van Westen CJ (2010) RiskCity and WebRiskCity: data collection, display and dissemination in a multi-risk training package. Cartogr Geogr Inf Sci 37(2):119–135

    Article  Google Scholar 

  • Frigerio S, Blahut J, Sterlacchini S, Poretti I (2010a) Landslides historical dataset and population distribution: Hystoric@, the experience of the Consortium of Mountain Municipalities of Valtellina di Tirano, Italy. In: Malet JP, Glade T, Casagli N (eds) Mountain risks – bringing science to society. CERG, Strasbourg

    Google Scholar 

  • Frigerio S, Skupinski G, Puissant A, Malet JP, Rose X (2010b) An open source WebGIS platform for sharing information and communicating about risks: the Barcelonnette Basin (South French Alps) as pilot study. In: Malet JP, Glade T, Casagli N (eds) Mountain risks – bringing science to society. CERG, Strasbourg

    Google Scholar 

  • Glade T, Anderson M, Crozier MJ (2005) Landslide hazard and risk. Wiley, Chichester

    Book  Google Scholar 

  • Goodchild MF (1999) Future directions in geographic information science. Geogr Inf Sci 5:1–8

    Google Scholar 

  • Green D, Bossomaier T (2002) Online GIS and spatial metadata. Taylor & Francis, London

    Google Scholar 

  • Harp EL, Castaneda M, Held MD (2002) Landslides triggered by Hurricane Mitch in Tegucigalpa, Honduras. USGS Open-File Report 02-0033. http://pubs.usgs.gov/of/2002/ofr-02-0033/

  • Hecht L (2002) Insist on interoperability. GeoWorld 15(4):22–23

    Google Scholar 

  • Heil B, Reichenbacher T (2009) The use of guidelines to obtain usability for geographic information interfaces. In: International cartography conference 2009, Santiago de Chile

    Google Scholar 

  • Heil B, Petzold I, Romang H, Hess J (2010) The common information platform for natural hazard in Switzerland. Nat Hazards. doi:10.1007/s11069-010-9606-6

    Google Scholar 

  • Herrmann J (2008) Interoperable access control for geo web services. In: Nayak S, Zlatanova S (eds) Remote sensing and GIS technologies for monitoring and prediction of disasters. Springer, Berlin/Heidelberg

    Google Scholar 

  • Holland J (1995) Hidden order: how adaptation builds complexity. Addison-Wesley, Reading

    Google Scholar 

  • Huang B, Jiang B, Lin H (2001) An integration of GIS, virtual reality and the internet for visualization, analysis and exploration of spatial data. Int J Geogr Inf Sci 15:439–456

    Article  Google Scholar 

  • Kappes M, Keiler M, von Elverfeldt K, Glade T (2012a) Challenges of analyzing multi-hazard risk: a review. Nat Hazards 64(2):1925–1958

    Google Scholar 

  • Kappes M, Gruber K, Frigerio S, Bell R, Keiler M, Glade T (2012b) A multi-hazard exposure analysis tool: the MultiRISK platform. Geomorphology 151–152:139–155

    Article  Google Scholar 

  • Kraak MJ, Brown A (2001) Web cartography, developments and prospects. Taylor & Francis, London

    Google Scholar 

  • Latini M, Kobben B (2005) A web application for landslide inventory using data-driven SVG. In: van Oosterom PJM et al (eds) Proceeding of the 1st international symposium on geo-information for disaster management. Springer, Berlin, pp 1041–1054

    Google Scholar 

  • Lehto L (2007) Real-time content transformations in a web service-based delivery architecture for geographic information. Helsinki University of Technology, Helsinki

    Google Scholar 

  • Lehto I, Sarjakoski T (2005) Real-time generalization of XML-encoded spatial data for the web and mobile devices. Int J Geogr Inf Sci 19(8–9):957–973

    Article  Google Scholar 

  • MacEachren AM (2001) Cartography and GIS: extending collaborative tools to support virtual teams. Prog Hum Geogr 25(3):431–444

    Article  Google Scholar 

  • MacEachren AM, Kraak MJ (2001) Research challenges in geovisualization. Cartogr Geogr Inf Sci 28:3–12

    Article  Google Scholar 

  • Maceachren AM, Cai G, Sharma R, Rauschert I, Brewer I, Bolelli L, Shaparenko B, Fuhrmann S, Wang H (2005) Enabling collaborative geoinformation access and decision-making through a natural, multimodal interface. Int J Geogr Inf Sci 19:293–317

    Article  Google Scholar 

  • Maggi L (2005) Lack of communication proved crippling: rescue, safety, recovery efforts were hindered. Times-Picayune A10

    Google Scholar 

  • Maiyo L, Kerle N, Köbben B (2010) Collaborative post-disaster damage mapping via geo web services. In: Konecny M et al (eds) Geographic information and cartography for risk and crisis management – towards better solutions, Lecture notes in geoinformation and cartography. Springer, Berlin/Heidelberg

    Google Scholar 

  • Malet JP, Remaître A, Maquaire O, Ancey C, Locat J (2003) Flow susceptibility of heterogeneous marly formations. Implications for torrent hazard control in the Barcelonnette basin (Alpes-de-Haute-Provence, France). In: Rickenmann D, Chen CL (eds) Proceedings of the third international conference on debris-flow hazard mitigation: mechanics, prediction and assessment, Davos, Switzerland. Mill Press, Rotterdam

    Google Scholar 

  • Maquaire O, Malet J-P, Remaître A, Locat J, Klotz S, Guillon J (2003) Instability conditions of marly hillslopes: towards landsliding or gullying? The case of the Barcelonnette basin, South East France. Eng Geol 70(1–2):109–130

    Article  Google Scholar 

  • Mastin MC, Olsen TD (2002) Fifty-year flood-inundation maps for Tegucigalpa, Honduras: U.S. Geological Survey Open-File Report 02-261. http://pubs.usgs.gov/of/2002/ofr02261/

  • McEntire DA, Myers A (2004) Preparing communities for disasters: Issues and processes for government readiness. Disaster Prev Manag 13(2):140–152

    Article  Google Scholar 

  • Moine M, Puissant A, Malet JP (2009) Detection of landslides from aerial and satellite images with a semi-automatic method. Application to the Barcelonnette basin (Alpes-de-Haute-Provence, France). In: Malet JP, Remaître A, Boogard TA (eds) Proceedings of the international conference ‘Landslide Processes: from geomorphologic mapping to dynamic modelling’. CERG, Strasbourg

    Google Scholar 

  • Nappi R, Alessio G, Bronzino G, Terranova C, Vilardo G (2008) Contribution of the SISCam web-based GIS to the seismotectonic study of Campania (Southern Apennines): an example of application to the Sannio-area. Nat Hazards 45:73–85

    Article  Google Scholar 

  • Newman MEJ (2001) The structure of scientific collaboration networks. Proc Natl Acad Sci USA 98:404–409

    Article  Google Scholar 

  • Peisheng Z, Yang C (1999) Studies on architecture of Web-GIS. In: Proceedings of the international symposium on digital earth. Science Press, Beijing, China

    Google Scholar 

  • Peng Z-R, Tsou M-H (2003) Internet GIS: distributed geographic information services for the internet and wireless networks. Wiley, Hoboken

    Google Scholar 

  • Rivas-Medina A, Gutierrez V, Gaspar-Escribano JM, Benito B (2009) Interactive web visualization tools to the results interpretation of a seismic risk study aimed at the emergency levels definition. Geophys Res Abstr 11:EGU2009–EGU12456

    Google Scholar 

  • Romang H, Fuchs S, Holub M, Faug T, Naaim M, Tacnet J-M, Durand Y, Giraud G, Dall’Amico M, Larcher M, Rigon R, Knveldsvik V, Sandersen F, Bicchiola D, Rulli C, Bischof N, Bründl M, Rheinberger C, Rhyner J, Barbolini M, Cappabianca F (2009) Work package 5: integral risk management – best practice of integral risk management of snow avalanches, rock avalanches and debris flows in Europe. Tech Rep Irasmos – Integral Risk Management of Extremely Rapid Mass Movements

    Google Scholar 

  • Salvati P, Calducci V, Bianchi C, Guzzetti F, Tonelli G (2009) A WebGIS for the dissemination of information on historical landslides and floods in Umbria, Italy. Geoinformatica 13:305–322

    Article  Google Scholar 

  • Soeters R, van Westen CJ (1996) Slope Instability. Recognition, analysis and zonation. In: Turner AK, Schuster RL (eds) Landslide: investigations and mitigation. Special Report 247. Transportation Research Board. National Research Council. National Academy Press, Washington, DC, pp 129–177

    Google Scholar 

  • Tsou MH (2004) Integrative web-based GIS and image processing tools for environmental monitoring and natural resource management. J Geogr Syst 6:155–174

    Article  Google Scholar 

  • van Westen CJ (2008) RiskCity: a training package on the use of GIS for urban multi-hazard risk assessment. In: Proceedings of the First world landslide forum, 18–21 Nov 2008, Tokyo, parallel session volume. United Nation University Press, Tokyo

    Google Scholar 

  • van Westen CJ, Castellanos Abella EA, Sekhar LK (2008) Spatial data for landslide susceptibility, hazards and vulnerability assessment: an overview. Eng Geol 102(3–4):112–131

    Article  Google Scholar 

  • Waugh LWJ (2000) Living with hazards, dealing with disasters: an introduction to emergency management. M.E. Sharpe Inc., Armonk

    Google Scholar 

  • Weick KE (1995) Sensemaking in organizations. Sage Publications, Thousand Oaks

    Google Scholar 

  • Yang CP, Wong D, Yang R, Kafatos M, Li Q (2005) Performance-improving techniques in web-based GIS. Int J Geogr Inf Sci 19(3):319–342

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Frigerio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Frigerio, S., Kappes, M., Blahůt, J., Skupinski, G. (2014). The Use of Geo-information and Modern Visualization Tools for Risk Communication. In: Van Asch, T., Corominas, J., Greiving, S., Malet, JP., Sterlacchini, S. (eds) Mountain Risks: From Prediction to Management and Governance. Advances in Natural and Technological Hazards Research, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6769-0_15

Download citation

Publish with us

Policies and ethics