Skip to main content

Site-Specific Fertilizing

  • Chapter
  • First Online:
Precision in Crop Farming

Abstract

Fertilisation aims at providing soils with nutrients for high crop yields without adversely affecting the environment. Since in most cases the properties of soils as well as of crops vary within individual fields, site-specific fertilization is needed. The challenge is to find sensing methods that provide suitable signals for the site-specific control of fertilizer application. Feasible approaches to meet this challenge are based on

  • recording the yield of previous crops and the nutrient removal derived from it

  • electrochemical indication of nutrients in soils by ion-selective electrodes

  • sensing the nutrients either in soils or in crops via optical reflectance.

The best choice depends on a variety of factors such as e.g. nutrient type, properties of soils, properties of crops and climate. The last listed method – sensing via optical reflectance – can be used in a proximal mode from farm machines or also in a remote mode from satellites provided clouds do not obstruct the radiation. Its use for in-season nitrogen application with proximal sensing from farm machines is becoming a leading technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamchuk VI (2008) On-the-go mapping of soil pH using antimony electrodes. ASABE annual international meeting, Providence, June 29–July 2, 2008. Paper No. 083995

    Google Scholar 

  • Adamchuk VI, Lund ED, Sethuramasamyraja B, Morgan MT, Dobermann A, Marx DB (2005) Direct measurement of soil chemical properties on-the-go using ion-selective electrodes. Comput Electron Agric 48:272–294

    Article  Google Scholar 

  • Adamchuk VI, Lund ED, Reed TM, Ferguson RB (2007) Evaluation of an on-the-go technology for soil pH mapping. Precis Agric 8:139–149

    Article  Google Scholar 

  • Baille A (1993) Artificial light sources for crop production. In: Varlet-Grancher C et al (eds) Crop structure and light microclimate. Institut National de la Recherche Agronomique, Paris, pp 107–120

    Google Scholar 

  • Bausch WC, Diker K (2001) Innovative remote sensing techniques to increase nitrogen use efficiency of corn. Commun Soil Sci Plant Anal 32(7 and 8):1371–1390

    Article  CAS  Google Scholar 

  • Belanger MC, Viau AA, Samson G, Chamberland M (2005) Determination of a multivariate indicator of nitrogen imbalance (MINI) in potato using reflectance and fluorescence spectroscopy. Agron J 97:1515–1523

    Article  CAS  Google Scholar 

  • Bennur PJ, Taylor RK (2010) Evaluating the response time of a rate controller used with a sensor-based variable rate application system. Appl Eng Agric 26(6):1069–1075

    Google Scholar 

  • Bogrekci J, Lee WS (2005) Spectral measurement of common soil phosphates. Trans Am Soc Agric Eng 48(6):2371–2378

    CAS  Google Scholar 

  • Brandt A (2011) Noise and vibration analysis. Signal analysis and experimental procedures. Wiley, Chichester

    Book  Google Scholar 

  • Bredemeier C, Schmidthalter U (2005) Laser-induced chlorophyll fluorescence sensing to determine biomass and nitrogen uptake of winter wheat under controlled environment and field condition. In: Stafford JV (ed) Proceedings of the 5th European conference on precision farming. Wageningen Academic Publishers, Wageningen, pp 273–280

    Google Scholar 

  • Chang CW, Laird DA, Mausbach MJ, Hurburgh CR (2001) Near-infrared reflectance spectroscopy – principal components regression analyses of soil properties. Soil Sci Soc Am J 65:480–490

    Article  CAS  Google Scholar 

  • Dammer KH, Wollny J, Giebel A (2008) Estimation of leaf-area-index in cereal crops for variable rate fungicide spraying. Euro J Agron 28:351–360

    Article  Google Scholar 

  • Dash J, Curran PJ (2007) Evaluation of the MERIS terrestrial chlorophyll index. Adv Space Res 39:100–104

    Article  CAS  Google Scholar 

  • Ehlert D, Hammen V, Adamek R (2003) Online sensor pendulum-meter for determination of plant mass. Precis Agric 4:139–148

    Article  Google Scholar 

  • Ehlert D, Dammer KH, Völker U (2004a) Application according to plant mass. Landtechnik 59(2):76–77 (in German)

    Google Scholar 

  • Ehlert D, Schmerler J, Voelker U (2004b) Variable nitrogen fertilization in winter wheat based on a crop density sensor. Precis Agric 5(3):263–273

    Article  Google Scholar 

  • EPA (2011) Drinking water contaminants. United States Environmental Protection Agency. Update 20 Sept 2011 www.epa.gov/drink/contaminants/#List

  • Erdle K, Mistele B, Schmidhalter U (2011) Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Res 124:74–84

    Article  Google Scholar 

  • Feiffer A, Kutschenreiter W, Feiffer P, Rademacher T (2005) Harvest of small grains – clean, safe, fast. A guide about combining. DLG Verlag, Frankfurt, p 126 (in German)

    Google Scholar 

  • Felton WL, McCloy R (1992) Spot spraying. Agric Eng 73:9–12

    Google Scholar 

  • Filella I, Penuelas J (1994) The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int J Remote Sens 15(7):1459–1470

    Article  Google Scholar 

  • Finck A (1991) Fertilization. Verlag Ulmer, Stuttgart (in German)

    Google Scholar 

  • Ge Y, Thomasson JA (2006) Wavelet incorporated spectral analysis for soil property determination. Trans ASABE 49(4):1193–1201

    CAS  Google Scholar 

  • Griepentrog HW, Kyhn M (2000) Strategies for site-specific fertilization in a highly productive agricultural region. In: University of Minnesota, Precision Agriculture Center (ed) Proceedings of the 5th international conference on precision agriculture, Minneapolis, July 2000

    Google Scholar 

  • Griepentrog HW, Persson K (2001) A model to determine the positional lag for fertilizer spreaders. In: Grenier G, Blackmore S (eds) Proceedings of the 3rd European conference on precision agriculture, Montpellier. Agro Montpellier, Ecole Nationale Superieure Agronomique, pp 671–676

    Google Scholar 

  • Günther KP, Dahn HG, Lüdeker W (1999) Laser-induced-fluorescence, a new method for “precision farming”. In: Bill R et al. (eds) Sensorsysteme in precision farming. Workshop, University of Rostock, 27–28 Sept 1999, Rostock. Institut für Geodäsie und Geoinformatik, pp 133–144

    Google Scholar 

  • Guyot G (1998) Physics of the environment and climate. Wiley, New York, p 49

    Google Scholar 

  • Guyot G, Baret F, Major DJ (1988) High spectral resolution: determination of spectral shifts between the red and infrared. Int Arch Photogramm Remote Sens 11:750–760

    Google Scholar 

  • Havrankova J, Godwin RJ, Rataj V, Wood GA (2008) Benefits from applications of ground based sensing systems in winter wheat nitrogen management in Europe. In: 2008 ASABE annual international meeting, Providence, Paper no. 083560

    Google Scholar 

  • Haykins S, Van Veen B (2003) Signals and systems, 2nd edn. Wiley, New York

    Google Scholar 

  • He Y, Huang M, Garcia A, Hernandez A, Song H (2007) Prediction of soil macronutrient content using near-infrared spectroscopy. Comput Electron Agric 58:144–153

    Article  Google Scholar 

  • Heege HJ, Reusch S (1996) Sensor for on-the-go control of site-specific nitrogen top dressing. In: International meeting in Phoenix. American Society of Agric Engineering, St. Joseph, Paper No. 961018

    Google Scholar 

  • Heege HJ, Thiessen E (2002) On-the-go sensing for site-specific nitrogen top dressing. In: ASAE international meeting/CIGR XVth world congress, Chicago. ASAE, St. Joseph, Paper No. 021113

    Google Scholar 

  • Heege HJ, Reusch S, Thiessen E (2008) Prospects and results for optical systems for site-specific on-the-go control of nitrogen top dressing in Germany. Precis Agric 9:115–131

    Article  Google Scholar 

  • Hinzman LD, Bauer ME, Daughtry CST (1986) Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat. Remote Sens Environ 19:47–61

    Article  Google Scholar 

  • Holland KH, Schepers JS (2010) Derivation of a variable rate nitrogen application model for in-season fertilization of corn. Agron J 102(5):1415–1419

    Article  Google Scholar 

  • Hopkins BG, Stephens SC, Shiffler AK (2007) Optical sensing for nitrogen management. In: Western nutrient management conference, Salt Lake City, 2007, vol 7, pp 98–105

    Google Scholar 

  • Huete AR (1988) A soil adjusted vegetation index. Remote Sens Environ 25:295–309

    Article  Google Scholar 

  • Inoue Y, Sakaiya E, Zhu Y, Takahashi W (2012) Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements. Remote Sens Environ 126:210–221

    Article  Google Scholar 

  • International Fertilizer Association (2007) In: Wichmann W (ed) World fertilizer use manual, Paris, France. http://www.fertilizer.org/ifa/HomePage/LIBRARY/Our-selection2/World-Fertilizer-Use-Manual

  • Jahn BR, Upadhyaya SK (2006) Development of mid-infrared-based calibration equations for predicting soil nitrate, phosphate and organic matter concentrations. In: ASABE annual international meeting, Portland, 9–12 July 2006, Paper No. 061058

    Google Scholar 

  • Jahn BR, Linker R, Upadhyaya SK, Shaviv A, Slaughter DC, Shmulevich I (2006) Mid-infrared spectroscopic determination of soil nitrate content. Biosyst Eng 94(4):505–515

    Article  Google Scholar 

  • Jasper J, Reusch S, Link A (2009) Active sensing of the N status of wheat using optimized wavelength combination: impact of seed rate, variety and growth stage. In: van Henten EJ, Goense D, Lockhorst C (eds) Precision agriculture ’09. Wageningen Academic Publishers, Wageningen, pp 23–30

    Google Scholar 

  • Jongschaap REE (2001) Integrating remote sensing information in dynamic simulation models: sensing nitrogen status in a potato crop. In: Grenier G, Blackmore S (eds) Proceedings of the 3rd European conference on precision agriculture. Agro, Ecole Nationale Superior Agronomique, Montpellier, pp 923–927

    Google Scholar 

  • Kappen L, Hammler A, Schultz G (1998) Seasonal changes in the photosynthetic capacity of winter rape plants under different nitrogen regimes in the field. J Agron Crop Sci 181:179–187

    Article  CAS  Google Scholar 

  • Kim HJ (2006) Ion-selective electrodes for simultaneous real-time analysis of soil macronutrients. Ph.D. thesis, University of Missouri, Columbia

    Google Scholar 

  • Kim HJ, Hummel JW, Birell SJ (2006) Evaluation of nitrate and potassium ion-selective membranes for soil macronutrient sensing. Trans ASABE 49(3):597–606

    CAS  Google Scholar 

  • Kim HJ, Hummel JW, Sudduth KA, Birell SJ (2007a) Evaluation of phosphate ion-selective membranes and cobalt-based electrodes for soil nutrient sensing. Trans ASABE 50(2):415–425

    CAS  Google Scholar 

  • Kim HJ, Hummel JW, Sudduth KA, Motavalli PP (2007b) Simultaneous analysis of soil macronutrients using ion-selective electrodes. Soil Sci Soc Am J 71(6):1867–1877

    Article  Google Scholar 

  • Kim HJ, Sudduth KA, Hummel JW (2009) Soil macronutrient sensing for precision agriculture. J Environ Monit 11:1810–1824

    Article  CAS  PubMed  Google Scholar 

  • Lamb DW, Steyn-Ross M, Schaare P, Hanna MM, Silvester W, Steyn-Ross A (2002) Estimating leaf nitrogen concentration in ryegrass (Loliun spp.) using the chlorophyll red edge: theoretical modelling and experimental observations. Int J Remote Sens 23(18):3619–3648

    Article  Google Scholar 

  • Lawrence KC, Bosoon P, Heitschmidt G, Windham WR (2005) LED lightning for use in multispectral and hyperspectral imaging. ASAE, St. Joseph, Paper No. 053073

    Google Scholar 

  • Lee KS, Lee DH, Sudduth KA, Chung SO, Kitchen NR, Drummond ST (2009) Wavelength identification and diffuse reflectance estimation for surface and profile soil properties. Trans ASABE 52(3):683–695

    CAS  Google Scholar 

  • Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4–14

    Article  CAS  Google Scholar 

  • Lund ED, Adamchuk VI, Collings KL, Drummond PE, Christy CD (2005) Development of soil pH and lime requirement maps using on-the-go soil sensors. In: Stafford J (ed) Precision agriculture ’05. Wageningen Academic Publishers, Wageningen, pp 457–464

    Google Scholar 

  • Maleki MR, Van Holm L, Ramon H, Merkx R, De Baerdemaeker J, Mouazen AM (2006) Phosphorus sensing for fresh soils using visible and near infrared spectrometry. Biosyst Eng 95(3):425–436

    Article  Google Scholar 

  • Maleki MR, Mouazen AM, De Ketelaere B, Ramon H, De Baerdemaeker J (2008a) On-the-go variable-rate phosphorus fertilisation based on a visible and near-infrared soil sensor. Biosyst Eng 99:35–46

    Article  Google Scholar 

  • Maleki MR, Ramon H, De Baerdemaker J, Mouazen AM (2008b) A study of the time response of a soil-based variable rate granular fertiliser applicator. Biosyst Eng 100:160–166

    Article  Google Scholar 

  • Marschner H (2008) Mineral nutrition of higher plants, 2nd edn. Academic Press, Amsterdam

    Google Scholar 

  • Martens H, Naes T (1992) Multivariate calibration. Wiley, Chichester

    Google Scholar 

  • Meier U (2001) Growth stages of mono – and dicoledoneous plants, 2nd edn. BBCH Monograph, Federal Biological Research Centre for Agriculture and Forestry, Braunschweig, http://www.bba.de/veroeff/bbch/bbcheng.pdf

  • Mitscherlich EA (1922) The law of the diminishing returns. Z Pflanzenernähr Dung 1(2):49–84 (in German)

    Article  Google Scholar 

  • Mouazen AM, De Baerdemaker J, Ramon H (2006) Effect of wavelength range on the measurement accuracy of some selected soil properties using VISNIR spectroscopy. J Near Infrared Spec 14(3):189–199

    Article  CAS  Google Scholar 

  • Mouazen AM, Maleki MR, Cockx L, Van Meirvenne M, Van Holm LHJ, Merckx R, De Baerdemaeker J, Ramon H (2009) Optimum three-point linkage set up for improving the quality of soil spectra and the accuracy of soil phosphorus measured using an online visible and near infrared sensor. Soil Till Res 103:144–152

    Article  Google Scholar 

  • Mulla DJ, McBratney AB (2000) Soil spatial variability. In: Summer ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp A321–A352

    Google Scholar 

  • Müller K, Böttcher U, Meyer-Schatz F, Kage H (2008) Analysis of vegetation indices derived from hyperspectral reflection measurements for estimating crop canopy parameters of oilseed rape (Brassica napus L.). Biosyst Eng 101:172–182

    Article  Google Scholar 

  • Nolan B, Stoner J (2000) Nutrients in groundwaters of the conterminous United States. Environ Sci Technol 34(7):1156–1163

    Article  CAS  Google Scholar 

  • Osmond DL, Kang J (2008) Soil facts. Nutrient removal by crops in North Carolina. North Carolina State University. Cooperative Extension Service. AG-439-16W

    Google Scholar 

  • Penuelas J, Filella I, Serrano L (1996) Cell wall elasticity and water index (R970nm/R900nm) in wheat under different nitrogen availabilities. Int J Remote Sens 17(2):373–382

    Article  Google Scholar 

  • Pettersson CG, Eckersten H (2007) Prediction of grain protein in spring malting barley grown in northern Europe. Eur J Agron 27:205–214

    Article  CAS  Google Scholar 

  • Potash Development Association (2006) Principles of potash use. Leaflet 8. The Potash Development Association, Laugharne. www.pda.org.uk

  • Reckleben Y (2003) Differences in yield and protein content with site-specific treatments for wheat. Landtechnik 58:252–253 (in German)

    Google Scholar 

  • Reckleben Y, Isensee E (2004) Influences on protein content and yield with small cereals. Landtechnik 59:242–243 (in German)

    Google Scholar 

  • Reusch S (1997) Development of an optical reflectance sensor for recording the nitrogen supply of agricultural crops. Doctoral dissertation, University of Kiel, Kiel, Forschungsbericht Agrartechnik der Max-Eyth-Gesellschaft Agrartechnik im VDI 303 (in German)

    Google Scholar 

  • Reusch S (2003) Optimization of oblique-view remote measurement of crop N-uptake under changing irradiance conditions. In: Stafford J, Werner A (eds) Precision agriculture. Papers from the 4th European conference on precision agriculture, Berlin, 16–18 June 2003. Wageningen Academic Publishers, Wageningen

    Google Scholar 

  • Reusch S (2005) Optimum waveband selection for determining the nitrogen uptake in winter wheat by active remote sensing. In: (a) Stafford J (ed) Precision agriculture ’05. Wageningen Academic Publishers, Wageningen, pp 261–266 (b) extended paper from Precision agriculture ’05, the 5th European conference of precision agriculture, held in Uppsala, 2005

    Google Scholar 

  • Reusch S (2009) Use of ultrasonic transducers for online biomass estimation in winter-wheat. In: van Henten EJ, Goense D, Lockhorst C (eds) Precision agriculture ’09. Wageningen Academic Publishers, Wageningen, pp 169–175

    Google Scholar 

  • Reusch S, Jasper J, Link A (2004) Advanced concept for research on variable rate nitrogen application based on remote sensing. In: Mulla DJ (ed) Proceedings of the 7th international conference on precision agriculture and other resources management, University of Minnesota, St. Paul, 25–27 July 2004

    Google Scholar 

  • Reusch S, Jasper J, Link A (2010) Estimating crop biomass and nitrogen uptake using CROPSPECTM, a newly developed active crop canopy sensor. In: Khosla R (ed) 10th international conference on precision agriculture, Denver, 18 July 2010

    Google Scholar 

  • Roberts DC, Wade Brorsen B, Taylor RD, Solie JB, Raun WR (2011) Replicability of nitrogen recommendations from ramped calibration strips in winter wheat. Precis Agric 12:653–665

    Article  Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639

    Article  CAS  Google Scholar 

  • Schächtl J, Huber G, Maidl FX, Sticksel E, Schulz J, Haschberger P (2005) Laser-induced chlorophyll fluorescence measurements for detecting the nitrogen status of wheat (Triticum aestivum l.) canopies. Precis Agric 6:143–156

    Article  Google Scholar 

  • Schepers JS (2008) Potential of precision agriculture to protect water bodies from negative impacts of agriculture. Landbauforschung – vTI Agric Forest Res 58(3):199–206

    Google Scholar 

  • Schepers JS, Varvel GE, Watts DG (1995) Nitrogen and water management strategies to reduce nitrate leaching under irrigated maize. J Contam Hydrol 20:227–239

    Article  CAS  Google Scholar 

  • Schepers JS, Hagopian DS, Varvel GE (1998) Monitoring crop stresses. In: Illinois fertilizer conference proceedings, 26–28 Jan 1998, report 16:3. http://frec.cropsci.uiuc.edu/1998/report16/index.htm

  • Schmid A, Maidl F-X (2005) Optimizing site-specific crop management by contact-free sensing of the heterogeneity of the canopy. In: IKB Dürnast, IKB-Teilprojekt 9, Abschluss – symposium, TU München-Weihenstephan: 23 (in German). http://ikb.weihenstephan.de/ikb2/deutsch/symposium/pdf/schmid.pdf

  • Sethuramasamyraja B, Adamchuk VI, Marx DB, Dobermann A, Meyer GE, Jones DD (2007) Analysis of an ion-selective electrode based methodology for integrated on-the-go mapping of soil pH, potassium, and nitrate contents. Trans ASABE 50(6):1927–1935

    CAS  Google Scholar 

  • Shanandeh H, Wright AL, Hons FM (2011) Use of soil nitrogen parameters and texture for spatially-variable nitrogen fertilization. Precis Agric 12:146–163

    Article  Google Scholar 

  • Shiratsuchi L, Ferguson R, Shanahan J, Adamchuk V, Rundquist D, Marx D, Slater G (2011) Water and nitrogen effects on active canopy sensor vegetation indices. Agron J 103:1815–1826

    Article  Google Scholar 

  • Sibley KJ (2008) Development and use of an automated on-the-go soil nitrate mapping system. Ph.D. thesis, Wageningen University, Wageningen

    Google Scholar 

  • Sibley KJ, Adsett JF, Struik PC (2008) An on-the-go soil sampler for an automated soil nitrate mapping system. Trans ASABE 51(6):1894–1904

    Google Scholar 

  • Sibley KJ, Astatkie T, Brewster G, Struik PC, Adsett JF, Pruski K (2009) Field scale validation of an automated soil nitrate extraction and measurement system. Precis Agric 10:162–174

    Article  Google Scholar 

  • Sibley KJ, Brewster GR, Astatkie T, Adsett JF, Struik PC (2010) In-field measurement of soil nitrate using an ion-selective electrode. In: Sharma MK (ed) Advances in measurement systems. InTechOpen, pp 1–27, InTech Europe University Campus STeP RiSlavka Krautzeka 83/A51000 Rijeka, Croatia. http://www.intechopen.com/books/advances-in-measurement-systems

  • Söderström M, Börjesson T, Pettersson CG, Nissen K, Hagner O (2010) Prediction of protein content in malting barley using proximal and remote sensing. Precis Agric 11:587–599

    Article  Google Scholar 

  • Soil Science Society of America (2008) Measuring nutrient removal, calculating nutrient budgets. In: Logsdon S, Clay D, Moore D, Tsegaye T (eds) Soil science: step-by-step field analysis, Madison, WIS, USA. www.soils.org

  • Solari F, Shanahan J, Ferguson R, Schepers J, Gitelson A (2008) Active sensor reflectance measurements of corn nitrogen status and yield potential. Agron J 100(3):571–579

    Article  CAS  Google Scholar 

  • Solie JB, Raun WR, Whitney RW, Stone ML, Ringer JD (1996) Optical sensor based field element size and sensing strategy for nitrogen application. Trans Am Soc Agric Eng 39(6):1983–1992

    Google Scholar 

  • Sprague LA, Mueller DK, Schwarz GE, Lorenz DL (2009) Nutrient trends in streams and rivers of the United States, 1993–2003: U.S. geological survey. Scientific investigations report 2008–5202. U.S. Geological Survey, Reston

    Google Scholar 

  • Swedish Institute of Agricultural Engineering (1988/89) In: Sundell B (ed) Annual report 1988/89. Meddelande nr 427, Uppsala, 12

    Google Scholar 

  • Thiessen E (2001) Experiences with sensor-controlled nitrogen-application. Landtechnik 56:278–279 (in German)

    Google Scholar 

  • Thiessen E (2002) Optical sensing-techniques for site-specific application of agricultural chemicals. Doctoral thesis, Department of Agricultural Systems Engineering, University of Kiel, Kiel. VDI-MEG Forschungsbericht Agrartechnik 399 (in German)

    Google Scholar 

  • Thoele H, Ehlert D (2010) Biomass related nitrogen fertilization with a crop sensor. Appl Eng Agric 26(3):769–775

    Google Scholar 

  • Thoren D (2007) Laser induced chlorophyll-fluorescence for detecting the N content, the biomass and the plant density – technology, sensing in the field, effect of light conditions. Doctoral dissertation, Chair of Plant Nutrition, Technical University Munich, Munich (in German)

    Google Scholar 

  • Thoren D, Schmidhalter U (2009) Nitrogen status and biomass determination of oilseed rape by laser-induced chlorophyll fluorescence. Eur J Agron 30:238–242

    Article  CAS  Google Scholar 

  • Thoren D, Thoren P, Schmidhalter U (2010) Influence of ambient light and temperature on laser-induced chlorophyll fluorescence measurements. Eur J Agron 32:169–175

    Article  CAS  Google Scholar 

  • Thriwakala S, Weersink A, Kachanowski G (1998) Management unit size and efficiency gains from nitrogen fertilizer application. Agric Syst 56(4):513–531

    Article  Google Scholar 

  • Tremblay N, Bouroubi YM, Belec C, Mullen RW, Kitchen NR, Thomason WE, Ebelhar S, Mengel DB, Raun WR, Francis DD, Vories ED, Ortiz-Monasterio I (2012) Corn response to nitrogen is influenced by texture and weather. Agron J 104(6):1658–1670

    Article  Google Scholar 

  • Umweltbundesamt (2011) Data on the environment. Environment and agriculture. Bonn. www.umweltdaten.de/publikationen/fpdf-1/4129.pdf

  • Viscarra Rossel RA, McBratney AB (2003) Modelling the kinetics of buffer reactions for rapid field predictions of lime requirements. Geoderma 114:49–63

    Article  CAS  Google Scholar 

  • Viscarra Rossel RA, Walvoort DJJ, McBratney AB, Janik LJ, Skemstad JO (2006) Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131:59–75

    Article  CAS  Google Scholar 

  • Werner A, Jarfe A, Leithold P (2004) Use of modules in practice. Management system für den ortsspezifischen Pflanzenbau. Verbundprojekt pre agro. Herausgegeben vom KTBL. Abschlussbericht, Kap 2, pp 51–65 (in German)

    Google Scholar 

  • WHO (2006) Protecting groundwater for health. Managing the quality of drinking water sources. In: Schmoll O, Howard G, Chilton J, Chorus I (eds) World health organization. IWA Publishers, London

    Google Scholar 

  • Wolter R (2004) Nitrate contamination of surface- and groundwater in Germany – results of monitoring. In: Bogena H, Hake JF, Vereeken H (eds) Water and sustainable development. Schriften des Forschungszentrums Jülich, Reihe: Umwelt/Environment 48, pp 71–79

    Google Scholar 

  • Yang CM, Su MR (2000) Analysis of spectral characteristics of rice canopy under water deficiency. In: Proceedings of the Asian conference on remote sensing. Session agriculture and soil, Taipei, 4–8 December 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann J. Heege .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heege, H.J. (2013). Site-Specific Fertilizing. In: Heege, H. (eds) Precision in Crop Farming. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6760-7_9

Download citation

Publish with us

Policies and ethics