Skip to main content

Site-Specific Recording of Yields

  • Chapter
  • First Online:
Book cover Precision in Crop Farming

Abstract

Site-specific recording of yields, also known as geo-referenced yield detection or yield monitoring, contributes to site-specific precision farming concepts by delivering fundamental information about the diversity of the yield potential. It is feeding back the effects of site-specific management on yields and allows to calculate the exports of nutrients.

In the early 1990th it started with combine harvesters and continuously working systems for recording yields in combination with the position of the machine. It followed site-specific yield measurement systems for forage harvesters, cotton pickers or strippers, potato and sugar beet harvesters, peanut and grape harvesters as well as sugar cane harvesters. Attempts were made to determine site-specific yield of manually harvested cultures like oranges, apples or coffee. Testing procedures to determine the accuracy of material flow sensors and yield measurement systems in the laboratory and in the field have been standardized.

Systems for site-specific recording of yields in combine-harvesters, forage choppers and cotton pickers are available at the market. The adoption in professional farming is concentrating on combinable crops. Efforts are needed to make systems available for all important crops, to integrate the sensing of essential crop ingredients and to standardize data formats as well as algorithms for data filtering and data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ASABE (2007 and 2012) American Society of Agricultural and Biological Engineers. Standards, S 578 and S 579. http://elibrary.asabe.org/standards.asp

  • Auernhammer H, Rottmeier J (1990) Weight determination in transport vehicles – exemplary shown on selfloading trailers. In: Technical Papers and Posters Abstracts of AgEng’90, 24–26 October 1990, Berlin, pp 100–101

    Google Scholar 

  • Auernhammer H, Demmel M, Muhr T, Rottmeier J, Wild K (1993) Yield measurement on combine harvesters. Paper No. 931506, ASAE, St. Joseph, MI

    Google Scholar 

  • Auernhammer H, Demmel M, Pirro PJM (1995) Yield measurement on self propelled forage harvesters. Paper No. 951757, ASAE, St. Joseph, MI

    Google Scholar 

  • Auernhammer H, Demmel M, Pirro PJM (1997) Throughput and yield sensing in self-propelled forage harvesters (in German) VDI Bericht 1356:135–138

    Google Scholar 

  • Bae YH, Borgelt SC, Searcy SW, Schueller JK, Stout BA (1989) Mapping of spatially variable yield during grain combining. Trans ASAE 32(3):826–829

    Google Scholar 

  • Barnet NG, Shinners KJ (1998) Analysis of systems to measure mass-flow-rate and moisture on forage harvesters. Paper No. 981118, ASAE, St. Joseph, MI

    Google Scholar 

  • Beck AD, Searcy SW, Roades JP (2001) Yield data filtering techniques for improved map accuracy. Appl Eng Agric 17(4):423–431

    Article  Google Scholar 

  • Behme JA, Schinstock JL, Bashford LL, Leviticus LI (1997) Site specific yield for forages. Paper No. 971054, ASAE, St. Joseph, MI

    Google Scholar 

  • Benjamin CE, Price RR, Mailander MP (2001) Sugar cane monitoring system. Paper No. 011189, ASAE, St. Joseph, MI

    Google Scholar 

  • Blackmore S, Marshall C (1996) Yield mapping; errors and algorithms. In: Robert PC, Rust AH, Larson WE (eds) Proceedings of the 3rd international conference on precision agriculture, 23–26 June 1996, Minneapolis. ASA; CSSA; SSSA. Madison, pp 403–415

    Google Scholar 

  • Broos B, Missotten B, Reybrouck W, De Baerdemaker J (1998) Mapping and interpretation of sugar beet yield differences. In: Robert PC, Rust RH, Larson WE (eds) Proceedings of the 4th international conference on precision agriculture. ASA, Madison

    Google Scholar 

  • Campbell RH, Rawlins SL, Han S (1994) Monitoring methods for potato yield mapping. Paper No. 943184, ASAE, St. Joseph, MI

    Google Scholar 

  • Cerri GP, Magalhaes PG (2005) Sugarcane yield monitor. Paper No. 051154, ASAE, St. Joseph, MI

    Google Scholar 

  • Cox GJ, Harris HD, Cox DR (1998) Application of precision agriculture to sugar cane. In: Robert PC, Rust RH, Larson WE (eds) Proceedings of the Fourth International Conference on Precision Agriculture. ASA; CSSA; SSSA, St. Paul, MN

    Google Scholar 

  • Demmel M (2001) Yield recording in combines – yield determination for site-specific yield sensing (in German). DLG Merkblatt 303. Hrsg: Deutsche Landwirtschafts-Gesellschaft, Fachbereich Landtechnik, Ausschuss für Arbeitswirtschaft und Prozesstechnik, Deutsche Landwirtschafts-Gesellschaft, 20 p

    Google Scholar 

  • Demmel M, Auernhammer H (1998) Local yield recording with potatoes and sugar beets (in German) VDI-Berichte 1449:263–268

    Google Scholar 

  • Demmel M, Auernhammer H (1999) Local yield measurement in a potato harvester and overall yield pattern in a cereal – potato crop rotation. Paper No. 991149, ASAE, St. Joseph, MI

    Google Scholar 

  • Demmel M, Auernhammer H, Rottmeier J (1998) Georeferenced data collection and yield measurement on a self propelled six row sugar beet harvester. Paper No. 983103, ASAE, St. Joseph, MI

    Google Scholar 

  • Demmel M, Schwenke T, Böck J, Heuwinkel H, Locher F, Rottmeier J (2002) Development and field test of a yield measurement system in a mower conditioner. EurAgEng Paper Number 02-PA-032, AgEng Budapest

    Google Scholar 

  • Durrance JS, Perry CD, Vellidis G, Thomas DL, Kvien CK (1998) Evaluation of commercially available cotton yield monitors in Georgia field conditions. Paper No. 983106, ASAE, St. Joseph, MI

    Google Scholar 

  • Ehlert D (1999) Throughput measurements for yield mapping in forage harvesters. Agric Eng Res 5(1):1–7

    Google Scholar 

  • Ehlert D (2002) Advanced throughput measurement in forage harvesters. Biosyst Eng 83(1):47–53

    Article  Google Scholar 

  • Glancey JL, Kee WE, Lynch M (1997) A preliminary evaluation of yield monitoring techniques for mechanically harvested processed vegetables. Paper No. 971060, ASAE, ST. Joseph, MI

    Google Scholar 

  • Godwin RJ, Wheeler PN (1997) Yield mapping by mass accumulation. Paper No. 971061, ASAE, St. Joseph, MI

    Google Scholar 

  • Hall TL, Backer LL, Hofmann VL, Smith LJ (1997) Monitoring sugar beet yield on a harvester. Paper No. 973139, ASAE, St. Joseph, MI

    Google Scholar 

  • Hennes D, Baert J, De Baerdemaeker J, Ramon H (2002) Yield mapping of sugar beets with a momentum type flow rate sensor. In: Proceedings of the conference agricultural engineering, Halle 2002. VDI, Düsseldorf, pp 247–252

    Google Scholar 

  • Khalilian A, Wolak FJ, Dodd RB, Han YJ (1999) Improved sensor mounting technology for cotton yield monitors. Paper No. 991052, ASAE, St. Joseph, MI

    Google Scholar 

  • Kormann G, Auernhammer H (2001) Continuous determination of ingredients in self-propelled forage harvesters (in German) VDI-Berichte 1636:279–284

    Google Scholar 

  • Kormann G, Demmel M, Auernhammer H (1998) Testing stand for yield measurement systems in combine harvesters. International AgEng Conference 98, Oslo, Paper No. 98-A-054

    Google Scholar 

  • Kromer KH, Degen P (1998) Volume and scale based measuring machine capacity and yield and soil tare of sugar beet. Paper No. 983107, ASAE, St. Joseph, MI

    Google Scholar 

  • Kumhala F, Kroulik M, Hermanek P, Prosek V (2001) Yield mapping of forage harvested by mowing machines. VDI Berichte 1636, Düsseldorf:267–272

    Google Scholar 

  • Kumhala F, Kroulik M, Prosek V (2007) Development and evaluation of forage yield measure sensors in a moving-conditioning machine. Comput Electron Agric 58(2):154–163

    Article  Google Scholar 

  • Mailander M, Benjamin C, Price R, Hall S (2010) Sugar cane yield monitoring system. Appl Eng Agric 25(6):965–969

    Google Scholar 

  • Missotten B (1998) Measurement systems for the mapping and evaluation of crop production performance. Doctoral dissertation, Katholieke Universiteit Leuven, Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen

    Google Scholar 

  • Missotten B, Broos B, Strubbe G, De Baerdemaeker J (1997) A yield sensor for forage harvesters. In: Stafford JV (ed) Precision agriculture ’97. Bios Scientific Publishers, Oxford, pp 529–536

    Google Scholar 

  • Molin JP, Menegatti LAA (2004) Field-testing of a sugar can yield monitor in Brazil. Paper No. 041099, ASAE, St. Joseph, MI

    Google Scholar 

  • Noack PO, Muhr T, Demmel M (2001) Long term studies on determination and elimination of errors occurring during the process of georeferenced yield data collection on combine harvesters. In: Grenier G, Blackmore S (eds) Proceedings of the third European conference on precision agriculture. Agro Montpellier 2001, vol 2, pp 833–837

    Google Scholar 

  • Noack PO, Muhr T, Demmel M (2003) Relative accuracy of different yield mapping systems installed on a single combine harvester. In: Stafford J, Werner A (eds) Precision agriculture – Proceedings of the European conference on precision agriculture 2003. Wageningen Academic Publishers, Wageningen, pp 451–457

    Google Scholar 

  • Pelletier MG, Upadhyaya SK (1998) Development of a tomato yield monitor. In: Robert PC et al (eds) Proceedings of 4th international conference on precision agriculture. American Society of Agronomy, Madison, pp 1119–1129

    Google Scholar 

  • Perez-Munoz F, Colvin TS (1994) Continuous grain yield monitoring. Paper No. 941053, ASAE, St. Joseph, MI

    Google Scholar 

  • Perry CD, Durrence JS, Vellidis G, Thomas DL, Hill RW, Kvien CS (1998) Experiences with a prototype peanut yield monitor. Paper No. 983095, ASAE, St. Joseph, MI

    Google Scholar 

  • Porter WM, Taylor RK, Godsey CB (2012) Application of an Ag Leader cotton yield monitor for measuring peanut yield. Paper No. 12–1338357, ASABE, St. Joseph, MI

    Google Scholar 

  • Price RR, Larsen J, Peters A (2007) Development of an optical yield monitor for sugar cane harvesting. Paper No. 071049, ASAE, St. Joseph, MI

    Google Scholar 

  • Price RR, Johnson RM, Viator RP, Larsen J, Peters A (2011) Fiber optic yield monitor for a sugar cane harvester. Trans ASABE 54(1):31–39

    Google Scholar 

  • Rands M (1995) The development of an expert filter to improve the quality of yield data. Unpublished Masters thesis. Department of Agricultural and Environmental Engineering, Silsoe College, UK

    Google Scholar 

  • Rawlins SL, Campbell GS, Campbell RH, Hess JR (1995) Yield mapping of potatoes. In: Robert PC, Rust RH, Larson WE (eds) Proceedings of the second international conference site-specific management for agricultural systems, ASA, Madison, WI, pp 59–69

    Google Scholar 

  • Reyns P (2002) Continuous measurement of grain and forage quality during harvest. Dissertation, Katholieke Universiteit Leuven, Belgium, Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen

    Google Scholar 

  • Rosa UA, Rosenstock TS, Choi H, Pursell D, Gliever CJ, Brown PH, Upadhyaya SK (2011) Design and evaluation of a yield monitoring system for pistachios. Trans ASABE 54(5):1555–1567

    Google Scholar 

  • Sanaei A, Yule IJ (1996) Yield measurement reliability on combine harvesters. Paper No. 961020, ASAE, St. Joseph, MI

    Google Scholar 

  • Sauter GJ, Kirchmeier H, Neuhauser H (2001) Yield recording in a cubic big baler (in German) Landtechnik 56(1):24–25

    Google Scholar 

  • Schmidhalter U, Maidl FX, Heuwinkel H, Demmel M, Auernhammer H, Noack PO, Rothmund M (2005) Precision farming – adaptation of land use management to small scale heterogeneity. In: Schröder P, Pfadenhauer J, Munch JC (eds) Perspectives for agroecosystem management. Elsevier, Amsterdam, pp 121–186

    Google Scholar 

  • Searcy SW, Motz DS, Inayattullah A (1997) Evaluation of a cotton yield mapping system. Paper No. 971058, ASAE, St. Joseph, MI

    Google Scholar 

  • Shinners KJ, Huenink BM, Behringer CB (2003) Precision agriculture as applied to North American hay and forage production. In: Electronic proceedings of the international conference on crop harvesting and processing, ASAE, St. Joseph, MI

    Google Scholar 

  • Steinmayr T (2002) Error analysis and error correction with site-specific yield sensing in combines for the development of a standardized algorithm for yield recording (in German). Doctoral dissertation, TU München, p 227. http://mediatum.ub.tum.de

  • Strubbe GJ (1997) Mechanics of friction compensation in mass flow measurement of bulk solids. Dissertation, Katholieke Universiteit Leuven, Belgium, Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen

    Google Scholar 

  • Strubbe GJ, Missotten B, De Baerdemaker J (1996) Mass flow measurement with a curved plate at the exit of an elevator. In: Robert PC, Rust RH, Larson WE (eds) Proceedings of the third international conference on precision agriculture, Madison, WI, pp 703–712

    Google Scholar 

  • Sudduth KA, Drummond ST, Myers DB (2012) Yield editor 2.0: software for automated removal of yield map errors. Paper No. 12–1338243, ASABE, St. Joseph, MI

    Google Scholar 

  • Sui R, Thomasson JA, Mehrle R, Dale M, Perry C, Rains G (2004) Mississippi cotton yield monitor: beta test for commercialization. Comput Electron Agric 42:149–160

    Article  Google Scholar 

  • Taylor RK, Kastens DL, Kastens TL (2000) Creating yield maps from yield monitor data using multi-purpose grid mapping (MPGM). In: Robert PC (ed) Proceedings of the fifth international conference on precision agriculture and other precision resources management, 16–20 July 2000, Bloomington/Minneapolis

    Google Scholar 

  • Taylor R, Fulton J, Mullenix D, Darr M, McNaull R, Haag L, Stauggenborg S (2011) Using yield monitors to assess on-farm test plots. Paper No. 1110690, ASABE, St. Joseph, MI

    Google Scholar 

  • Thomasson JA, Sui R (2004) Optical peanut yield monitor. Development and testing. Paper No. 041095, ASABE, St. Joseph, MI

    Google Scholar 

  • Thylen L, Algerbo PA, Giebel A (2000) An expert filter removing erroneous yield data. In: Robert PC (ed) Proceedings of the fifth international conference on precision agriculture and other precision resources management, 16–20 July 2000, Bloomington/Minneapolis

    Google Scholar 

  • Tisseyre B, Mazzoni C, Ardoin N, Clipet C (2001) Yield and harvest quality measurement in precision viticulture – application for selective vintage. In: Grenier G, Blackmore S (eds) Third European conference on precision agriculture, Montpellier, France, pp 133–138

    Google Scholar 

  • Vansichen R, Baerdemaeker D (1993) A measurement technique for yield mapping of corn silage. J Agric Eng Res 55(1):1–10

    Article  Google Scholar 

  • Vellidis G, Perry CD, Durrence JS, Thomas DL, Hill RW, Kevin CK, Hamrita TK, Rains G (2001) The peanut yield monitoring system. Trans ASAE 44(4):775–785

    Google Scholar 

  • Vellidis G, Perry CD, Rains GC, Thomas DL, Wells N, Kvien CK (2003) Simultaneous assessment of cotton yield monitors. Appl Eng Agric 19(3):259–272

    Google Scholar 

  • Walter JD, Hofmann VL, Backer LF (1996) Site-specific sugar beet yield monitoring. In: Robert PC, Rust RH, Larson WE (eds) Proceedings of the third international conference on precision agriculture, Madison, WI

    Google Scholar 

  • Welle R, Greten W, Rietmann B, Alley S, Sinnaeve G, Dardenne P (2003) Near-infrared spectroscopy on chopper to measure maize forage quality parameters online. Crop Sci 43:1407–1413

    Article  Google Scholar 

  • Wild K, Ruhland S, Haedicke S (2004) A conveyor belt based system for local yield measurement in a mower conditioner. In: Proceedings of AgEng ’04, Leuven, Belgium

    Google Scholar 

  • Wilkerson JB, Kirby JS, Hart WE, Womac AR (1994) Real-time cotton flow sensor. Paper No. 941054, ASAE, St. Joseph, MI

    Google Scholar 

  • Wilkerson JB, Moody FH, Hart WE, Funk PA (2001) Design and evaluation of a cotton flow rate sensor. Trans ASABE 44(5):1415–1420

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Demmel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Demmel, M. (2013). Site-Specific Recording of Yields. In: Heege, H. (eds) Precision in Crop Farming. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6760-7_12

Download citation

Publish with us

Policies and ethics