Skip to main content

Spatiotemporal Analysis of Dengue Infection Between 2005 and 2010

  • Chapter
  • First Online:
Dhaka Megacity

Part of the book series: Springer Geography ((SPRINGERGEOGR))

Abstract

The high incidence of dengue fever in Dhaka is a constant threat to the population and a recurring problem for the health authorities. This chapter investigates the spatial and temporal epidemiology of dengue fever between 2005 and 2010. This epidemiological analysis provided important information about the pattern of the virus cases with standard deviation ellipses being used for directional examination of the incidences. To investigate spatial dependencies and examine the occurrence pattern for clustering, Moran’s I and Local Indicators of Spatial Association (LISA) analysis were utilised. Results showed that there was obvious spatial autocorrelation as well as significant clustering of dengue cases in Dhaka, revealing that the virus is concentrated around the heart of the city.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed MTU, Rahman GMS, Bashar K, Shamsuzzaman M, Samajpati S, Sultana S, Hossain MI, Banu NN, Rahman MS (2007) Seasonal prevalence of dengue vectors mosquito in Dhaka city, Bangladesh. Bangladesh J Zool 35(2):205–212

    Google Scholar 

  • Ali M, Wagatsuma Y, Emch M, Breiman RF (2003) Use of geographic information system for defining spatial risk for dengue transmission in Bangladesh: role for Aedes Albopictus in an urban outbreak. Am J Trop Med Hyg 69(6):634–640

    Google Scholar 

  • Anker M, Arima Y (2011) Male-female differences in the number of reported incident dengue fever cases in six Asian countries. West Pac Surveill Response J 2(2):17–23

    Google Scholar 

  • Anselin L (1995) Local indicators of spatial association – LISA. Geogr Anal 27(2):93–115

    Article  Google Scholar 

  • Anselin L (2003) GeoDa 0.9 user’s guide, Urbana-Champaign, Spatial Analysis Laboratory (SAL), Department of Agricultural and Consumer Economics, University of Illinois, Illinois

    Google Scholar 

  • Anselin L (2004) GeoDa 0.95i release notes, Urbana-Champaign, Spatial Analysis Laboratory (SAL), Department of Agricultural and Consumer Economics, University of Illinois, Illinois

    Google Scholar 

  • Anselin L, Syabri I, Kho Y (2006) GeoDa: an introduction to spatial data analysis. Geogr Anal 38(1):5–22

    Article  Google Scholar 

  • Bangladesh Bureau of Statistics (BBS) (2003) Community series-2001. http://www.bbs.gov.bd/PageWebMenuContent.aspx?MenuKey=142. Accessed June 2011

  • Bhandari KP, Raju PLN, Sokhi BS (2008) Application of GIS modelling for dengue fever prone area based on socio-cultural and environmental factors – a case study of Delhi city zone. Int Arch Photogramm Remote Sens Spat Inf Sci 37(B8):165–170

    Google Scholar 

  • Blewitt M (2012) Multiple sclerosis geographics, investigating aetiology through space/time epidemiology. http://www.msgeographics.com/index_files/Page660.htm. Accessed 12 Dec 2012

  • Bohra A, Andrianasolo H (2001) Application of GIS in modeling of dengue risk based on sociocultural data: case of Jalore, Rajasthan, India. Dengue Bull 25:92–102

    Google Scholar 

  • Braga A (2003) Serious youth gun offenders and the epidemic of youth violence in Boston. J Quant Criminol 19(1):33–54

    Google Scholar 

  • Castillo KC, Korbl B, Stewart A, Gonzalez JF, Ponce F (2011) Application of spatial analysis to the examination of dengue fever in Guayaquil, Ecuador. Proc Environ Sci 7:188–193

    Article  Google Scholar 

  • CDC (2012) Dengue and the Aedes aegypti mosquito. United States Center for Disease Control, Atlanta. http://www.cdc.gov/dengue/resources/30jan2012/aegyptifactsheet.pdf. Accessed 25 Jan 2013

  • Choudhury Z, Banu S, Islam A (2008) Forecasting dengue incidence in Dhaka, Bangladesh: a time series analysis. Dengue Bull 32:29–36

    Google Scholar 

  • Dewan AM (2013) Floods in a megacity: geospatial techniques in assessing hazards, risk and vulnerability. Springer, Dordrecht

    Book  Google Scholar 

  • Dewan AM, Corner RJ, Hashizume M, Ongee ET (2013) Typhoid fever and its association with environmental factors in the Dhaka Metropolitan Area of Bangladesh: a spatial and time-series approach. PLoS Negl Trop Dis 7(1):e1998

    Google Scholar 

  • Environmental System Research Institute (ESRI) (2012) http://resources.esri.com/help/9.3/ArcGISengine/java/Gp_ToolRef/spatial_statistics_tools/directional_distribution_standard_deviational_ellipse_spatial_statistics_.htm. Accessed 15 Dec 2012

  • Erickson RA, Presley SM, Allen LJS, Long KR, Cox SB (2010) A dengue model with a dynamic Aedes albopictus vector population. Ecol Model 221(24):2899–2908

    Article  Google Scholar 

  • ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Gubler DJ (1998) Resurgent vector-borne diseases as a global health problem. Emerg Infect Dis 4(3):442–450

    Article  Google Scholar 

  • Guha-Sapir D, Schimmer B (2005) Dengue fever: new paradigms for a changing epidemiology. Emerg Themes Epidemiol 2(1):1–10

    Article  Google Scholar 

  • Haddow AD, Odoi A (2009) The incidence risk, clustering, and clinical presentation of La Crosse virus infections in the Eastern United States, 2003–2007. PLoS ONE 4(7):1–8

    Google Scholar 

  • Hanafi-Bojd AA, Vatandoost H, Oshagi MA, Charrahy Z, Haghdoost AA, Zamani G, Abedi F, Sedaghat MM, Soltani M, Shahi M, Raeisi A (2012) Spatial analysis and mapping of malaria risk in an endemic area, south of Iran: a GIS based decision making for planning of control. Acta Trop 122(1):132–137

    Article  Google Scholar 

  • Hashizume M, Dewan AM, Sunahara T, Rahman MZ, Yamamoto T (2012) Hydroclimatological variability and dengue transmission in Dhaka, Bangladesh: a time-series study. BMC Infect Dis 12:98

    Article  Google Scholar 

  • Hsueh Y-H, Lee J, Beltz L (2012) Spatio-temporal patterns of dengue fever cases in Kaohsiung City, Taiwan 2003–2008. Appl Geogr 34:587–594

    Article  Google Scholar 

  • Igarashi A (1997) Impact of dengue virus infection and its control. FEMS Immunol Med Microbiol 18(4):291–300

    Article  Google Scholar 

  • Jeefoo P, Tripathi NK, Souris M (2011) Spatio-temporal diffusion pattern and hotspot detection of dengue in Chachoengsao province, Thailand. Int J Environ Res Public Health 8:51–74

    Google Scholar 

  • Kalayanarooj S, Vaughn DW, Nimmannitya S, Green S, Suntayakorn S, Kunentrasai N, Viramitrachai W, Ratanachu-eke S, Kiatpolpoj S, Innis BL, Rothman AL, Nisalak A, Ennis FA (1997) Early clinical and laboratory indicators of acute dengue illness. J Infect Dis 176(2):313–321

    Article  Google Scholar 

  • Khormi HM, Kumar L (2011) Modeling dengue fever risk based on socioeconomic parameters, nationality and age groups: GIS and remote sensing based case study. Sci Total Environ 409(22):4713–4719

    Article  Google Scholar 

  • Martinez R (2007) Geographic information system for dengue prevention and control. World Health Organization report of the scientific working group on dengue-on behalf of the special programme for research and training in tropical diseases, WHO Regional Office for the Americas (AMRO)/PanAmerican Health Organization (PAHO), pp 134–139

    Google Scholar 

  • Micieli MV, Campos RE (2003) Oviposition activity and seasonal pattern of a population of Aedes (Stegomyia) aegypti in Subtropical Argentina. Mem Inst Oswaldo Cruz 98(5):659–663

    Article  Google Scholar 

  • Mondini A, Neto FC (2008) Spatial correlation of incidence of dengue with socioeconomic, demographic and environmental variables in a Brazilian city. Sci Total Environ 393(2–3):241–248

    Article  Google Scholar 

  • Mondini A, Neto FC, Sanches MGY, Lopes JCC (2005) Spatial analysis of dengue transmission in a medium-sized city in Brazil. Revista De Saude Publica 29(3):444–451

    Google Scholar 

  • Morrison AC, Getis A, Santiago M, Rigau-Perez JG, Reiter P (1998) Exploratory space-time analysis of reported dengue cases during an outbreak in Florida, Puerto Rico, 1991–1992. Am J Trop Med Hyg 58(3):287–298

    Google Scholar 

  • Nakhapakorn K, Jirakajohnkool S (2006) Temporal and spatial autocorrelation statistics of dengue fever. Dengue Bull 30:171–183

    Google Scholar 

  • Nakhapakorn K, Tripathi NK (2005) An information value based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence’. Int J Health Geogr 4(13):177–183

    Google Scholar 

  • O’Sullivan D (2012) Local indicators of spatial association. Penn State College of Earth and Mineral Sciences. https://www.e-education.psu.edu/geog586/l9_p11.html. Accessed 12 Dec 2012

  • Pathirana S, Kawabata M, Goonetilake R (2009) Study of potential risk of dengue disease outbreak in Sri Lanka using GIS and statistical modelling. J Rural Trop Publ Health 8:8–17

    Google Scholar 

  • Pratt M (2003) Down-to-earth approach jumpstarts GIS for dengue outbreak, The magazine for ESRI software users. http://www.esri.com/library/reprints/pdfs/arcuser_dengue-outbreak.pdf. Accessed 8 Aug 2012

  • Ranjit S, Kissoon N (2011) Dengue hemorrhagic fever and shock syndromes. Paediatr Crit Care Med 12(1):90–100

    Article  Google Scholar 

  • Rezaeian M, Dunn G, Leger SS, Appleby L (2007) Geographical epidemiology, spatial analysis and geographical information systems: a multidisciplinary glossary. J Epidemiol Community Health 61(2):98–102

    Article  Google Scholar 

  • SPSS Inc (1999) SPSS Base 10.0 for Windows user’s guide. SPSS Inc., Chicago

    Google Scholar 

  • Tran A, Deparis X, Dussart P, Morvan J, Rabarison P, Remy F, Polidori L, Gardon J (2004) Dengue spatial and temporal patterns, French Guiana, 2001. Emerg Infect Dis 10(4):615–621

    Article  Google Scholar 

  • United Nations Environmental Programme (UNEP) (2006) Regional resource centre for Asia and the Pacific State of the Environment report. Asian Institute of Technology, Dhaka

    Google Scholar 

  • Vanwambeke SO, Van-Benthem BHB, Khantikul N, Burghoorn-Mass C, Panart K, Oskam L (2006) Multi-level analyses of spatial and temporal determinants for dengue infection. Int J Health Geogr 5(5)

    Google Scholar 

  • Vezzani D, Velazquez SM, Schweigmann N (2004) Seasonal pattern of abundance of Aedes aegypti in Buenos Aires City, Argentina. Mem Inst Oswaldo Cruz 99(4):351–356

    Article  Google Scholar 

  • Wen T, Lin N, Lin C, King C, Su M (2006) Spatial mapping of temporal risk characteristics to improve environmental health risk identification: a case study of a dengue epidemic in Taiwan. Sci Total Environ 367(2–3):631–640

    Article  Google Scholar 

  • Wilder-Smith A, Chen LH, Massad E, Wilson ME (2009) Threat of dengue to blood safety in dengue-endemic countries. Emerg Infect Dis 15(1):8–11

    Article  Google Scholar 

  • World Health Organisation (WHO) (2009) Dengue: Guidelines for diagnosis, treatment, prevention and control – New edn. WHO Press, Geneva

    Google Scholar 

  • World Health Organisation (WHO) (2012) Dengue and severe dengue (fact sheet). http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed 13 June 2012

  • Wu P-C (2009) Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Sci Total Environ 407(7):2224–2233

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge the support of the International Foundation for Science (IFS), Sweden, for funding part of this work under a project (Reference: W4656-1) on which Ashraf M. Dewan was the Principal Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarwa Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ali, S., Corner, R.J., Hashizume, M. (2014). Spatiotemporal Analysis of Dengue Infection Between 2005 and 2010. In: Dewan, A., Corner, R. (eds) Dhaka Megacity. Springer Geography. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6735-5_20

Download citation

Publish with us

Policies and ethics