Skip to main content

Supported Heteropoly Acids and Multicomponent Polyoxometalates as Eco-Friendly Solid Catalysts for Bulk and Fine Chemicals Synthesis

  • Chapter
  • First Online:
Book cover Environmentally Benign Catalysts

Abstract

Supported heteropoly acids are an important class of eco-friendly solid catalysts which offer strong acidity or redox properties. Part 1 of this chapter gives the detailed description of Keggin heteropoly acids such as silicotungstic acid (STA) and phosphotungstic acid (PTA) supported on zirconia as thermally stable, reusable solid catalysts which can be used for variety of organic transformations such as alkylation, acylation, and allylation. The catalysts are characterized by various techniques such as X-ray diffraction, N2 sorption measurements, DTG–DTA, UV–Vis spectroscopy, FTIR pyridine adsorption, NH3-TPD, FT-Raman, and 31P MAS NMR. These supported HPA catalysts found to be highly active and selective with a long catalytic lifetime in the discussed reactions. Part 2 of this chapter describes the preparation of inorganic–organic hybrid materials by immobilization of molybdo-vanadophosphoric acids onto mesoporous silicas such as MCM-41, MCM-48, and SBA-15. The study has been further extended to mesoporous carbon and ethane-bridged SBA-15. All catalyst materials were characterized by elemental analysis, FTIR, N2 physisorption measurements, XRD, UV/Vis, XPS, CP-MAS-NMR, SEM, and TEM for their structural integrity and physicochemical properties. These materials were applied for various selective and controlled oxidation processes to develop environmentally benign protocols for synthesis of fine chemicals and tried to study their mechanisms. Further, a simple cation exchanged form of H5[PMo10V2O40]·32.5H2O supported on ionic liquid-modified SBA-15 (V2ILSBA) and its application in catalyzed aerobic oxidation of primary and secondary alcohols to corresponding aldehydes and ketones with no trace of over oxidation has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hill CL (1998) Chem Rev 98:1

    Article  CAS  Google Scholar 

  2. Okuhara T, Mizuno N, Misono M (1996) Adv Catal 41:113

    Article  CAS  Google Scholar 

  3. Kozhevnikov IV (1998) Chem Rev 98:171

    Article  CAS  Google Scholar 

  4. Wu Y, Ye X, Yang X, Wang X, Chu W, Hu Y (1996) Ind Eng Chem Res 35:2546

    Article  CAS  Google Scholar 

  5. Tanabe K, Yamaguchi T (1994) Catal Today 20:185

    Article  CAS  Google Scholar 

  6. Chuah GK (1999) Catal Today 49:131

    Article  CAS  Google Scholar 

  7. Yadav GD, Nair JJ (1999) Microporous Mesoporous Mater 33:1

    Article  CAS  Google Scholar 

  8. Barton DG, Soled SL, Iglesia E (1998) Topics Catal 6:87

    Article  CAS  Google Scholar 

  9. Kuba S, Lukinskas P, Grasselli RK, Gates BC, Knözinger H (2003) J Catal 216:353

    Article  CAS  Google Scholar 

  10. Gregorio FD, Keller V (2004) J Catal 225:45

    Article  Google Scholar 

  11. Lopez-Salinas E, Hermandez-Cortez JG, Cortes-Jacome MA, Navarrete J, Llanos ME, Vazquez A, Armendariz H, Lopez T (1998) Appl Catal A 175:43

    Article  CAS  Google Scholar 

  12. Lopez-Salinas E, Hermandez-Cortez JG, Schifter I, Torres-Garcia E, Navarrete J, Gutierrez-Carrillo A, Lopez T, Lottici PP, Bersani D (2000) Appl Catal A 193:215

    Article  CAS  Google Scholar 

  13. Song H, Rioux RM, Hoefelmeyer JD, Komor R, Niesz K, Grass M, Yang P, Somorjai GA (2006) J Am Chem Soc 128:3027

    Article  CAS  Google Scholar 

  14. Ganesan R, Viswanathan B (2000) Bull Catal Soc India 10:1–10

    Google Scholar 

  15. (a) Mazeaud A, Dromzee Y, Thouvenot R (2000) Inorg Chem 39:4735–4740; (b) Kukovecz Â, KoÂnya Z, Kiricsi I (2001) J Mol Struct 565:121–124; (c) Johnson BJS, Stein A (2001) Inorg Chem 40:801–808; (d) Kaleta W, Nowinska K (2001) Chem Commun 535–536; (e) Maldotti A, Molinari A, Varani G, Lenarda M, Storaro L, Bigi F, Maggi R, Mazzacani A, Sartori G (2002) J Catal 209:210–216; (f) Li HL, Perkas N, Li QL, Gofer Y, Koltypin Y, Gedanken A (2003) Langmuir 19:10409–10413; (g) Wang J, Zhu HU (2004) Catal Lett 93:209–212; (h) Errington RJ, Petkar SS, Horrocks BR, Houlton A, Lie LH, Patole SN (2005) Angew Chem Int Ed 44:1254–1257; (i) Kato N, Tanabe A, Negishi S, Goto K, Nomiya K (2005) Chem Lett 34:238–239; (j) Izumi Y, Urabe K (1981) Chem Lett 663–663; (k) Neumann R, Levin M (1991) J Org Chem 56:5707–5710; (l) Fujibayashi S, Nakayama K, Nishiyama Y, Ishii Y (1994) Chem Lett 1345–1345; (m) Karimi Z, Mahjoub AR, Harati SM (2011) Inorg Chimi Acta 376:1–9; (n) Hajian R, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor B, Iraj K, Reza A (2011) J Coord Chem 64:4134–4144; (o) Aoki S, Kurashina T, Kasahara Y, Nishijima T, Nomiya K (2011) Dalton Trans 40:1243–1253; (p) Ferreira P, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2010) App Catal B 98:94–99; (q) Panchenko VN, Borbath I, Timofeeva MN, Goboeloes S (2010) J Mol Catal A 319:119–125; (r) Qi W, Wang Y, Li W, Wu L (2010) Chem Eur J 16:1068–1078; (s) Zhang R, Yang C (2008) J Mater Chem 18:1691–2703; (t) Lee J, Kim H, La KW, Park DR, Jung JC, Lee SH, Song IK (2008) Catal Lett 123:90–95; (u) Kim H, Jung JC, Park DR, Lee H, Lee J, Lee SH, Baeck SH, Lee KY, Yi J, Song IK (2008) Catal Today 132:58–62

    Google Scholar 

  16. (a) Okuhara T, Mizuno N, Misono M (1996) Adv Catal 41:113–252; (b) Mizuno N, Misono M (1998) Chem Rev 98:199–218; (c) Kozhevnikov IV (1998) Chem Rev 98:171–198

    Google Scholar 

  17. Kholdeeva OA, Maksimchuk NV, Maksimov GM (2010) Catal Today 157:107–113

    Article  CAS  Google Scholar 

  18. Devassy BM, Lefebvre F, Halligudi SB (2005) J Catal 231:1–10

    Article  CAS  Google Scholar 

  19. Devassy BM, Halligudi SB (2005) J Catal 236:313–323

    Article  CAS  Google Scholar 

  20. Devassy BM, Halligudi SB (2006) J Mol Catal A Chem 253:8–15

    Article  CAS  Google Scholar 

  21. Busca G (1998) Catal Today 41:191–206

    Article  CAS  Google Scholar 

  22. Rocchiccioli-Deltcheff C, Fournier M, Franck R, Thouvenot R (1983) Inorg Chem 22:207–216

    Article  CAS  Google Scholar 

  23. Teague CM, Li X, Biggin ME, Lee L, Kim J, Gewirth AA (2004) J Phys Chem B 108:1974–1985

    Article  CAS  Google Scholar 

  24. Echizen MT, Nagata K, Yoshinaga Y, Okuhara T (2003) J Mol Catal A 201:145–153

    Article  Google Scholar 

  25. Loridant S, Feche C, Essayem N, Figueras F (2005) J Phys Chem B 109:5631–5637

    Article  CAS  Google Scholar 

  26. Scheithauer M, Grasselli RK, Knözinger H (1998) Langmuir 14:3019–3029

    Article  CAS  Google Scholar 

  27. (a) Misono M (2001) Chem Commun 1141; (b) Dillon CJ, Holles JH, Davis RJ, Labinger JA, Davis ME (2003) J Catal 218:54; (c) Ghanbari-Siahkali A, Philippou A, Dwyer J, Anderson MW (2000) Appl Catal A 192:57; (d) Molnar A, Beregszaszi T, Fudala A, Lentz P, Nagy JB, Konya Z, Kiricsi I (2001) J Catal 202:379; (e) Uchida S, Inumaru K, Misono M (2000) J Phys Chem B 104:8108

    Google Scholar 

  28. Kocal JA, Vora BV, Imai T (2001) Appl Catal A Gen 221:295–301

    Article  CAS  Google Scholar 

  29. Shanbhag GV, Devassy BM, Halligudi SB (2004) J Mol Catal A Chem 218:67–72

    Article  CAS  Google Scholar 

  30. Bachiller-Baeza B, Anderson JA (2004) J Catal 228:225–233

    Article  CAS  Google Scholar 

  31. Devassy BM, Shanbhag GV, Mirajkar SP, Böhringer W, Fletcher J, Halligudi SB (2005) J Mol Catal A Chem 233:141–146

    Article  CAS  Google Scholar 

  32. Devassy BM, Shanbhag GV, Halligudi SB (2006) J Mol Catal A Chem 247:162–170

    Article  CAS  Google Scholar 

  33. Devassy BM, Shanbhag GV, Lefebvre F, Halligudi SB (2004) J Mol Catal A Chem 210:125–130

    Article  CAS  Google Scholar 

  34. (a) Sawant DP, Devassy BM, Halligudi SB (2004) J Mol Catal A Chem 217:211–217; (b) Devassy BM, Halligudi SB, Elangovan SP, Ernst S, Hartmann M, Lefebvre F (2004) J Mol Catal A Chem 221:113–119; (c) Devassy BM, Lefebvre F, Böhringer W, Fletcher J, Halligudi SB (2005) J Mol Catal A Chem 236:162–167; (d) Sunita G, Devassy BM, Vinu A, Sawant DP, Balasubramanian VV, Halligudi SB (2008) Catal Commun 9:696–702; (e) Justus J, Vinu A, Devassy BM, Balasubramanian VV, Böhringer W, Fletcher J, Halligudi SB (2008) Catal Commun 9:1671–1675

    Google Scholar 

  35. (a) Devassy BM, Halligudi SB, Hegde SG, Halgeri AB, Lefebvre F (2002) Chem Commun 1074–1075; (b) Devassy BM, Shanbhag GV, Lefebvre F, Böhringer W, Fletcher J, Halligudi SB (2005) J Mol Catal A Chem 230:113–119

    Google Scholar 

  36. Kim H, Jung JC, Song IK (2007) Catal Surv Asia 11:114–122

    Article  CAS  Google Scholar 

  37. (a) Okun NM, Anderson TM, Hill CL (2003) J Am Chem Soc 125:3194–3195; (b) Okun NM, Anderson TM, Hill CL (2003) J Mol Catal A 197:283–290

    Google Scholar 

  38. Khenkin AM, Neumann R, Sorokin AB, Tuel A (1999) Catal Lett 63:189–192

    Article  CAS  Google Scholar 

  39. (a) Neumann R, Cohen M (1997) Angew Chem Int Ed 36:1738–1740; (b) Cohen M, Neumann R (1999) J Mol Catal A 146:291–298

    Google Scholar 

  40. Neumann R, Miller H (1995) J Chem Soc Chem Commun 2277–2278

    Google Scholar 

  41. Kanno M, Yu-ki M, Yasukawa T, Hasegawa T, Ninomiya W, Ooyachi K, Imai H, Tatsumi T, Kamiya Y (2011) Catal Commun 13:59–62

    Article  CAS  Google Scholar 

  42. Kala Raj NK, Deshpande SS, Ingle RH, Raja T, Manikandan P (2004) Catal Lett 98:217–223

    Article  Google Scholar 

  43. Ressler T, Dorn U, Walter A, Schwarz S, Hahn AHP (2010) J Catal 275:1–10

    Article  CAS  Google Scholar 

  44. Mizuno N, Yamaguchi K, Kamata K (2011) Catal Sur Asia 15:68–79

    Article  CAS  Google Scholar 

  45. Bordoloi A, Lefebvre F, Halligudi SB (2007) J Catal 247:166–175

    Article  CAS  Google Scholar 

  46. (a) Siahkali AG, Philippou A, Dwyer J, Anderson MW (2000) Appl Catal A 192:57–69; (b) Kanda Y, Lee KY, Nakata S, Asaoka S, Misona M (1988) Chem Lett 1:139–139; (c) Mastikhin VM, Kulikov SM, Nosov AV, Kozhevnikov IV, Mudrakovsky IL, Timofeeva MN (1990) J Mol Catal 60:65–70; (d) Huang W, Todaro L, Yap GPA, Beer R, Francesconi LC, Polenova T (2004) J Am Chem Soc 126:11564–11573

    Google Scholar 

  47. (a) Kasai J, Nakagawa Y, Uchida S, Yamaguchi K, Mizuno N (2006) Chem Eur J 12:4176–4184; (b) Casarini D, Centi G, Jiru P, Lena V, Tvaruzkova Z (1993) J Catal 143:325–344

    Google Scholar 

  48. (a) Giles GI, Sharma RP (2005) J Peptide Sci 11:17–423; (b) Priebe W (ed) (1993) Anthracycline antibiotics, new analogues, methods of delivery, mechanisms of action. In: American Chemical Society Symposium Series 574; (c) Driscoll JS, Hazard GF, Wood HB, Goldin A (1974) Cancer Chemother Rep 2:1–362; (d) Cairns D, Michalitsi E, Jenkins TC, Mackay SP (2002) Bioorg Med Chem 10:803–807; (e) Lown JW (1993) Pharmacol Ther 60:185–214; (f) Cheng C, Zee-Cheng RKY (1983) Prog Med Chem 20:83–118; (g) Huang HS, Chiou JF, Fong Y, Hou CC, Lu YC, Wang JY, Shih JW, Pan YR, Lin JJ (2003) J Med Chem 46:3300–3307; (h) Ge P, Russell RA (1997) Tetrahedron 53:7469–17476; (g) Lee CP, Singh KH (1982) J Nat Prod 45:206–210

    Google Scholar 

  49. Monneret C (2001) Eur J Med Chem 36:483–493

    Article  CAS  Google Scholar 

  50. Ullmann F, Gerhartz W, Yamamoto YS, Campbell FT, Pfefferkorn R (1985) Ullmann’s encyclopedia of industrial c hemistry, vol 2. VCH, Weinheim, pp 347–348

    Google Scholar 

  51. Butterworth BE, Mathre OB, Ballinger K (2001) Mutagenesis 16:169–177

    Article  CAS  Google Scholar 

  52. Kozhevnikov I (1995) Catalyst for fine chemical synthesis: catalysis by polyoxometalates. Wiley, New York, p 138

    Google Scholar 

  53. (a) Hill CL (1998) In: Baumstark AL (ed) Advances in oxygenated processes, vol 2. JAI Press, London, pp 1–30; (b) Hudlucky M (1990) In: Oxidations in organic chemistry, ACS monograph series. American Chemical Society, Washington, DC; (c) Shilov AE, Shul’pin GB (2000) In: Activation and catalytic reactions of saturated hydrocarbons in the presence of metal complexes. Kluwer Academic Publishers, Dordrecht; (d) Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879–2932; (e) Mizuno N, Kamata K, Yamaguchi K (2010) Topics Catal 53:876–893

    Google Scholar 

  54. (a) Barton DHR (1996) Chem Soc Rev 25:237–239; (b) Perkins MJ (1996) Chem Soc Rev 25:229–236

    Google Scholar 

  55. Bordoloi A, Lefebvre F, Halligudi SB (2007) Appl Catal A Gen 333:143–152

    Article  CAS  Google Scholar 

  56. (a) Bang Y, Park DR, Lee YJ, Jung JC, Song IK (2011) J Chem Engg 28:79–83; (b) Ferreira P, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2011) Catal Commun 12:573–576

    Google Scholar 

  57. Hong UG, Park DR, Park S, Seo JG, Bang Y, Hwang S, Youn MH, Song IK (2009) Catal Lett 132:377–382

    Article  CAS  Google Scholar 

  58. Fujibayashi S, Nakayama K, Hamamoto M, Sakaguchi S, Nishiyama Y, Ishii Y (1996) J Mol Catal A 110:105–117

    Article  CAS  Google Scholar 

  59. Xu L, Boring E, Hill CL (2000) J Catal 195:394–405

    Article  CAS  Google Scholar 

  60. Bordoloi A, Mathew N, Lefebvre F, Halligudi SB (2008) Microporous Mesoporous Mater 115:345–355

    Article  CAS  Google Scholar 

  61. Guo W, Park JY, Oh MO, Jeong HW, Cho WJ, Kim I, Ha CS (2003) Chem Mater 15:2295–2298

    Article  CAS  Google Scholar 

  62. Zhang WH, Daly B, O’Callaghan J, Zhang L, Shi JL, Li C, Morris MLA, Holmes JD (2005) Chem Mater 17:6407–6415

    Article  CAS  Google Scholar 

  63. Hu Q, Pang J, Wu Z, Lu Y (2006) Carbon 44:1298–1352

    Article  Google Scholar 

  64. Jarrais B, Silva AR, Freire C (2005) Eur J Inorg Chem 2005:4582–4589

    Google Scholar 

  65. Khenkin AM, Vigdergauz I, Neumann R (2000) Chem Eur J 6:875–882

    Article  Google Scholar 

  66. Fieser LF, Tushler M, Sampson WL (1941) J Biol Chem 137:659–692

    CAS  Google Scholar 

  67. (a) Periasamy M, Bhatt MV (1978) Tetrahedron Lett 4:4561–4562; (b) Kreh RP, Spotnitz RM, Lundquist JT (1989) J Org Chem 54:1526–1531; (c) Skarzewski J (1984) Tetrahedron 40:4997–5000; (d) Hiranuma H, Miller SI (1982) J Org Chem 47:5083–5088; (e) Kowalski J, Ploszynska J, Sobkowiak A (1998) J Appl Electrochem 28:1261–1264

    Google Scholar 

  68. Fieser LF (1940) J Biol Chem 133:391–396

    CAS  Google Scholar 

  69. (a) Sheldon RA (1993) Top Curr Chem 164:21–43; (b) Adam W, Herrmann WA, Lin J, Saha-Moller CR, Fischer RW, Correia JDG (1995) Angew Chem Int Ed 33:2475–2477; (c) Adam W, Herrmann WA, Lin J, Saha-Moller CR (1994) J Org Chem 59:8281–8283

    Google Scholar 

  70. (a) Song R, Sorokin A, Bernadou J, Meunier B (1997) J Org Chem 62:673–678; (b) Anunyiata OA, Pierella LB, Beltramone AR (1999) J Mol Catal A 149:255–261

    Google Scholar 

  71. Bohle A, Schubert A, Sun Y, Thiel WR (2006) Adv Synth Catal 348:1011–1015

    Article  CAS  Google Scholar 

  72. (a) Welton T (1999) Chem Rev 99:2071–2084; (b) Zhao D, Wu M, Kou Y, Min E (2002) Catal Today 74:157–189

    Google Scholar 

  73. (a) Riisager A, Fehrmann R, Flicker S, Van Hal R, Haumann M, Wassercheid P (2005) Angew Chem Int Ed 44:815–819; (b) Gruttadauria M, Riela S, Aprile C, Meo PL, D’Anna F, Noto R (2006) Adv Synth Catal 348:82–92; (c) Mehnert CP (2004) Chem Eur J ,1:50–56; (d) Sahoo S, Kumar P, Lefebvre F, Halligudi SB (2009) Appl Catal A Gen 354:17–25

    Google Scholar 

  74. Shi X, Han X, Maa W, Wei J, Li J, Zhang Q, Chen Z (2011) J Mol Catal 341:57–62

    Article  CAS  Google Scholar 

  75. Bordoloi A, Sahoo S, Lefebvre F, Halligudi SB (2008) J Catal 259:232–239

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G.V. Shanbhag, A. Bordoloi, S. Sahoo, and B.M. Devassy gratefully acknowledge CSIR (INDIA) and NCL, Pune, for their support. S.B. Halligudi thanks governing council of Centre of Excellence, Vapi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Halligudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Panch Tattva Publishers, Pune, India

About this chapter

Cite this chapter

Shanbhag, G.V., Bordoloi, A., Sahoo, S., Devassy, B.M., Halligudi, S.B. (2013). Supported Heteropoly Acids and Multicomponent Polyoxometalates as Eco-Friendly Solid Catalysts for Bulk and Fine Chemicals Synthesis. In: Patel, A. (eds) Environmentally Benign Catalysts. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6710-2_5

Download citation

Publish with us

Policies and ethics