Climatic Influence on Oak Landscape Distributions

  • Sonia RoigEmail author
  • Rand R. Evett
  • Guillermo Gea-Izquierdo
  • Isabel Cañellas
  • Otilio Sánchez-Palomares
Part of the Landscape Series book series (LAEC, volume 16)


Climate is one determinant of the distribution and structure of California oak woodlands and Spanish dehesas. We summarize studies conducted in the two regions that use different methodologies to investigate the influence of climate on the distribution of oak species in California and on the development of dehesa silvopastoral systems in Spain. Results show some common climatic characteristics, mainly strong summer drought, medium to low overall year rainfall, and high summer temperatures. However, the influence of climate on oak distribution and management differs sharply. Climate strongly influences oak distribution in California. However, it has little effect on whether or not oak forests are managed as dehesa in Spain. Soil characteristics and socioeconomic issues are more important factors than climate for the creation and maintenance of dehesas in Spain.


Dehesa Oak woodlands Climatic change Quercus Summer drought 



The authors are very grateful to David Sanchez de Ron for contributing photos, and for his valuable comments on this work. Comments made by referees were also very helpful during revision.


  1. Allen BH, Holzman BA, Evett RR (1990) A classification system for California hardwood rangeland. Hilgardia 59:1–45Google Scholar
  2. Anderson MK (2006) Tending the wild: native american knowledge and the management of California’s natural resources. University of California Press, BerkeleyGoogle Scholar
  3. Austin MP (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Model 200:1–19CrossRefGoogle Scholar
  4. Austin MP, Nicholls AO, Margules CR (1990) Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species. Ecol Monogr 60:161–177CrossRefGoogle Scholar
  5. Barbero M, Loisel R, Quézel P (1992) Biogeography, ecology and history of Mediterranean Quercus ilex ecosystems. Vegetatio 99–100:19–34CrossRefGoogle Scholar
  6. Bartolome JW, Muick PC, McClaran MP (1987) Natural regeneration of Californian hardwoods. In: Plumb TR, Pillsbury NH (tech. coords.) Proceedings of the symposium on multiple-use management of California’s hardwood resources. General technical report PSW–100, USDA forest service PSW forest and range experiment station, BerkeleyGoogle Scholar
  7. Bedia J, Busque J, Gutierrez JM (2011) Predicting plant species distribution across an alpine rangeland in Northern Spain. A comparison of probabilistic methods. Appl Veget Sci 14:415–432CrossRefGoogle Scholar
  8. Brasier CM (1992) Oak tree mortality in Iberia. Nature 360:539CrossRefGoogle Scholar
  9. Bravo F, Rivas JC, Monreal JA, Ordóñez C (2002) BASIFOR 2.0: Aplicación informática para el manejo de las Bases de datos del Inventario Forestal Nacional. Departamento de Producción Vegetal y Silvopascicultura. Universidad de ValladolidGoogle Scholar
  10. Díaz-Maroto IJ, Fernández-Parajes J, Vila-Lameiro PJ (2006) Autoécologie du chêne tauzin (Quercus pyrenaica Willd.) en Galice (Espagne). Ann For Sci 63:157–167CrossRefGoogle Scholar
  11. Donley MW, Allan S, Caro P, Patton C (1979) Atlas of California. Pacific Book Center, Culver CityGoogle Scholar
  12. Eastman JR (1992) IDRISI, Version 4.0. Worcester, Massachusetts, Clark University, Graduate School of GeographyGoogle Scholar
  13. Elford CR (1970) Climates of California Counties. Published by various state agencies. Available in the water resources library on the U.C. Berkeley campus, Vol 1–44Google Scholar
  14. Evett RR (1994) Determining environmental realized niches for six oak species in California through direct gradient analysis and ecological response surface modeling, Ph.D. dissertation. University of California, CaliforniaGoogle Scholar
  15. Gandullo JM, Sánchez Palomares O (1994) Estaciones ecológicas de los pinares españoles. MAPA–ICONA. Colección Técnica, Madrid (Spain)Google Scholar
  16. García del Barrio JM, Bolaños F, Ortega M, Elena-Roselló R (2004) Dynamics of land use and land cover change in dehesa landscapes of the REDPARES network between 1956 and 1988. Adv Geoecol 37:47–54Google Scholar
  17. Gea-Izquierdo G, Martín-Benito D, Cherubini P, Cañellas I (2009) Climate-growth variability in Quercus ilex West Iberian open woodlands of different stand density. Ann For Sci 66:802CrossRefGoogle Scholar
  18. Griffin JR (1973) Valley oaks—the end of an era? Fremontia 1:5–9Google Scholar
  19. Griffin JR, Critchfield WB (19729 The distribution of forest trees in California. USDA Forest Service, Pacific southwest forest and range experiment station research paper PSW–82Google Scholar
  20. Hayhoe K, Cayan D, Field CB, Frumhoff PC, Maurer EP, Miller NL, Moser SC, Schneider SH, Nicholas Cahill K, Cleland EE, Dale L, Drapek R, Hanemann RM, Kalkstein LS, Lenihan J, Lunch CK, Neilson RP, Sheridan SC, Verville JH (2004) Emissions pathways, climate change, and impacts on California. PNAS 101:12422–12427PubMedCrossRefGoogle Scholar
  21. Jepson WL (1910) The silva of California. In: Memoirs of the University of California, Vol 2 University of California, BerkeleyGoogle Scholar
  22. Kueppers LM, Snyder MA, Sloan LC, Zavaleta ES, Fulfrost B (2005) Modeled regional climate change and California endemic oak ranges. PNAS 102:16281–16286PubMedCrossRefGoogle Scholar
  23. Lenihan JM, Drapek R, Bachelet D, Neilson RP (2003) Climate change effects on vegetation distribution, carbon, and fire in California. Ecol Appl 13:1667–1681CrossRefGoogle Scholar
  24. Lindenmayer DB, Nix HA, McMahon JP, Hutchinson MF, Tanton MT (1991) The conservation of Leadbeater’s possum, Gymnobelideus leadbeateri (McCoy): a case study of the use of bioclimatic modelling. J Biogeo 18:371–383CrossRefGoogle Scholar
  25. Major J (1988) California climate in relation to vegetation. In: Barbour MG, Major J (eds) Terrestrial vegetation of California, 2nd edn. California Native Plant Society, SacramentoGoogle Scholar
  26. Minnich RA (2008) California’s fading wildflowers: lost legacy and biological invasions. University of California Press, BerkeleyGoogle Scholar
  27. Moreno G, Pulido F (2009) Dehesa functioning, management, and persistence. In: Rigueiro A, Mosquera MR, McAdam J (eds) Agroforestry in Europe. Springer, Berlin, pp 127–160Google Scholar
  28. Myatt RG (1975) Geographic and ecological variation in Quercus chrysolepis, Liebm Ph.D. Dissertation, University of California, DavisGoogle Scholar
  29. Nix HA (1986) A biogeographic analysis of the Australian elapid snakes. In: Longmore R (ed) Atlas of elapid snakes. Australian Flora and Fauna Series 7:4–15Google Scholar
  30. Papanastasis VP (2004) Vegetation degradation and land use changes in agrosilvopastoral systems. In: Schnabel S, Ferreira A (eds) Advances in Geoecology 37: sustainability of agrosilvopastoral systems. Catena Verlag, Reiskirchen, pp 1–12Google Scholar
  31. Pavlik BM, Muick PM, Johnson SG, Popper M (1991) Oaks of California. Cachuma Press, Los OlivosGoogle Scholar
  32. Plumb TR (1980) Response of oaks to fire. In: Plumb TR (tech. coor.) Proceedings of the symposium on the ecology, management, and utilization of California oaks. General technical report PSW–44, USDA Forest service PSW forest and range experiment station, BerkeleyGoogle Scholar
  33. Puerto A, Rico M (1992) Spatial variability on slopes of Mediterranean grasslands: structural discontinuities in strongly contrasting topographic gradients. Vegetatio 98:23–31CrossRefGoogle Scholar
  34. Pulido FJ, Díaz M (2005) Regeneration of a Mediterranean oak: a whole-cycle approach. Ecoscience 12:92–102CrossRefGoogle Scholar
  35. Roig S, Alonso-Ponce R, Sánchez-González MO, García del Barrio JM, Cañellas I (2007) Caracterización de la dehesa española de encina y alcornoque a partir del Inventario Forestal Nacional. Reunión GT Sistemas Agroforestales de la SECF. Plasencia. Abril Cuader Soc Ciens Forest 22:163–170Google Scholar
  36. Rubio A, Elena R, Sanchez O, Blanco A, Sanchez F, Gómez V (1999) Autoecología de los castañares catalanes. Invest Agrar: Sist Recur For 8:387–405Google Scholar
  37. Rushton SP, Ormerod SJ, Kerby G (2004) New paradigms for modelling species distributions? J Appl Ecol 41:193–200CrossRefGoogle Scholar
  38. San Miguel A, Roig S, Cañellas I (2002) Las prácticas agroforestales en la Península Ibérica. Cuadernos de la SECF 14:33–38Google Scholar
  39. Sánchez de Ron D, Elena-Roselló R, Roig S, García del Barrio JM (2007) Los paisajes de dehesa en España y su relación con el ambiente geoclimático. Cuadernos de la SECF. Reunión GR Sistemas Agroforestales 22:171–176Google Scholar
  40. Sánchez Palomares O, Sánchez Serrano F, Carretero Carrero MP (1999) Modelos y cartografía de estimaciones climáticas para la España peninsular, MAPAGoogle Scholar
  41. Sánchez Palomares O, Rubio A, Blanco A, Elena R, Gómez V (2003) Autoecología paramétrica de los hayedos de Castilla y León. Invest Agrar: Sist Recur For 12:87–110Google Scholar
  42. Sánchez Palomares O, Jovellar LC, Sarmiento LA, Rubio A, Gandullo JM (2007) Las estaciones ecológicas de los alcornocales españoles. Monografías INIA: Serie forestal n° 14. INIA. Madrid, SpainGoogle Scholar
  43. Santika T, Hutchinson MF (2009) The effect of species response form on species distribution model prediction and inference. Ecol Model 220:2365–2379CrossRefGoogle Scholar
  44. Santos MJ, Thorne JH (2010) Comparing culture and ecology: conservation planning of oak woodlands in Mediterranean landscapes of Portugal and California. Environ Conserv 37:155–168CrossRefGoogle Scholar
  45. Shafer SL, Bartlein PJ, Thompson RS (2001) Potential changes in the distributions of western North America tree and shrub taxa under future climate scenarios. Ecosystems 4:200–215CrossRefGoogle Scholar
  46. Tyler CM, Kuhn B, Davis FW (2006) Demography and recruitment limitations of three oak species in California. Q Rev Biol 81:127–152PubMedCrossRefGoogle Scholar
  47. Vayssieres MP, Plant RE, Allen-Diaz BW (2000) Classification trees: an alternative non-parametric approach for predicting species distributions. J Veget Sci 11:679–694CrossRefGoogle Scholar
  48. Wieslander AE (1935) A vegetation type map of California. Madroño 3:140–144Google Scholar
  49. Zavaleta ES, Hulvey KB, Fulfrost B (2007) Regional patterns of recruitment success and failure in two endemic California oaks. Divers Distrib 13:735–745CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sonia Roig
    • 1
    Email author
  • Rand R. Evett
    • 2
  • Guillermo Gea-Izquierdo
    • 3
  • Isabel Cañellas
    • 3
  • Otilio Sánchez-Palomares
    • 3
  1. 1.Department of Silviculture and PasturesTechnical University of Madrid ETSI MontesMadridSpain
  2. 2.Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyUSA
  3. 3.Forest Research CentreNational Institute for Agriculture and Food Research and TechnologyMadridSpain

Personalised recommendations