Skip to main content

Ocean Acidification and Warming Effects on Crustacea: Possible Future Scenarios

  • Chapter
  • First Online:

Abstract

Continuously-increasing concentrations of atmospheric carbon dioxide CO2, primarily through the burning of fossil fuels, are rapidly increasing the oceanic concentrations of CO2 and leading to the phenomenon of ocean acidification. Evidence to date on the effects of altered seawater chemistry on the biota is growing, yet is in its infancy. Evidence of effects is limited mostly to fish, molluscs and echinoderms, yet there is a growing body of evidence of effects of ocean acidification on the Crustacea. Our predictive ability on physiological effects and the potential ecosystem level effects is currently limited. By posing fundamental questions, the answers may lie in implementing mechanistic-level studies in order to elucidate organism physiological limits and species’ potential to adapt to future oceanic conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arnold KE, Findlay H, Spicer JI, Daniels CL, Boothroyd D (2009) Effect of CO2-related acidification on aspects of the larval development of the European lobster, Homarus gammarus (L.). Biogeoscience 6:1747–1754. doi:10.5194/bgd-6-3087-2009

    Article  CAS  Google Scholar 

  • Batterton CV, Cameron JN (1978) Characteristics of resting ventilation and response to hypoxia, hypercapnia and emersion in the blue crab Callinectes sapidus. J Exp Zool 203:403–418. doi:10.1002/jez.1402030308

    Article  Google Scholar 

  • Booth JAT, McPhee-Shaw EE, Chua P, Kingsley E, Denny MP, Roger B, Steven J, Zeidberg LD, Gilly WF (2012) Natural intrusions of hypoxic, low pH water into nearshore marine environments on the California coast. Cont Shelf Res 45:108–115. doi:10.1016/j.csr.2012.06.009

    Article  Google Scholar 

  • Brander K (2010) Impacts of climate change on fisheries. J Marine Syst 79:389–402. doi:10.1016/j.jmarsys.2008.12.015

    Article  Google Scholar 

  • Brewer PG, Peltzer E (2009) Limits to marine life. Science 324:347–348. doi:10.1126/science.1170756

    Article  CAS  Google Scholar 

  • Burgents JE, Burnett KG, Burnett LE (2005) Effects of hypoxia and hypercapnic hypoxia on the localization and the elimination of Vibrio campbellii in Litopenaeus vannamei, the Pacific white shrimp. Biol Bull 208:159–168

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365. doi:10.1038/425365a

    Article  CAS  Google Scholar 

  • Calvo E, Simó R, Coma R et al (2011) Effects of climate change on Mediterranean marine ecosystems: the case of the Catalan Sea. Climate Res 50:1–29. doi:10.3354/cr01040

    Article  Google Scholar 

  • Cameron JN (1978) Effects of hypercapnia on blood acid–base status, NaCl fluxes, and trans-gill potential in freshwater blue crabs, Callinectes sapidus. J Comp Physiol B 123:137–141

    Article  CAS  Google Scholar 

  • Cameron JN (1985) Compensation of hypercapnic acidosis in the aquatic blue crab, Callinectes sapidus: the predominance of external seawater over carapace carbonate as the proton sink. J Exp Biol 114:197–206

    CAS  Google Scholar 

  • Cameron JN, Iwama GK (1987) Compensation of progressive hypercapnia in channel catfish and blue crabs. J Exp Biol 133:183–197

    Google Scholar 

  • Cameron JN, Mangum CP, Bliss DE (1983) Environmental adaptations of the respiratory system: ventilation, circulation and oxygen transport. In: Vernberg J, Vernberg WB (eds) The biology of crustacea: environmental adaptations. Academic, New York

    Google Scholar 

  • Chevin L-M, Collins S, Lefèvre F (2012) Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Funct Ecol. doi:10.1111/j.1365-2435.2012.02043.x

    Google Scholar 

  • Coll M, Piroddi C, Steenbeek J et al (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5:e11842. doi:10.1371/journal.pone.0011842

    Article  Google Scholar 

  • Crutzen PJ, Stoermer EF (2000) The “anthropocene”. Global Change Newslett 41:17–18

    Google Scholar 

  • de la Haye KL, Spicer JI, Widdicombe S, Briffa M (2011) Reduced sea water pH disrupts resource assessment and decision making in the hermit crab Pagurus bernhardus. Anim Behav 82:495–501. doi:10.1016/j.anbehav.2011.05.030

    Article  Google Scholar 

  • de la Haye KL, Spicer JI, Widdicombe S, Briffa M (2012) Reduced pH sea water disrupts chemo-responsive behaviour in an intertidal crustacean. J Exp Mar Biol Ecol 412:134–140. doi:10.1016/j.jembe.2011.11.013

    Article  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. doi:10.1126/science.1156401

    Article  CAS  Google Scholar 

  • Dissanayake A, Ishimatsu A (2011) Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri) (Crustacea: Penaeidae). ICES J Mar Sci 68:1147–1154. doi:10.1093/icesjms/fsq188

    Article  Google Scholar 

  • Dissanayake A, Clough R, Spicer JI, Jones MB (2010) Effects of hypercapnia on acid–base balance and osmo-/iono-regulation in prawns (Decapoda: Palaemonidae). Aquat Biol 11:27–36. doi:10.3354/ab00285

    Article  Google Scholar 

  • Donohue P, Calosi P, Bates A et al (2012) Impact of exposure to elevated pCO 2 on the physiology and behaviour of an important ecosystem engineer, the burrowing shrimp Upogebia deltaura. Aquat Biol 15:73–86. doi:10.3354/ab00408

    Article  Google Scholar 

  • FAO (2008) The state of world fisheries and aquaculture. FAO, Rome

    Google Scholar 

  • Feely RA, Sabine CL, Lee K et al (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366. doi:10.1126/science.1097329

    Article  CAS  Google Scholar 

  • Feely RA, Alin SR, Newton J et al (2010) The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar Coast Shelf S 88:442–449. doi:10.1016/j.ecss.2010.05.004

    Article  CAS  Google Scholar 

  • Findlay HS, Kendall MA, Spicer JI, Widdicombe S (2009) Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Mar Ecol Prog Ser 389:193–202. doi:10.3354/meps08141

    Article  Google Scholar 

  • Findlay HS, Burrows MT, Kendall MA et al (2010) Can ocean acidification affect population dynamics of the barnacle Semibalanus balanoides at its southern range edge? Ecology 91:2931–2940. doi:dx.doi.org/10.1890/09-1987.1

    Article  Google Scholar 

  • Fine M, Tchernov D (2007) Scleractinian coral species survive and recover from decalcification. Science 315:1811. doi:10.1126/science.1137094

    Article  CAS  Google Scholar 

  • Fitzer SC, Caldwell GS, Close AJ et al (2012) Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation. J Exp Mar Biol Ecol 418–419:30–36. doi:10.1016/j.jembe.2012.03.009

    Article  Google Scholar 

  • Franklin CE, Seebacher F (2009) Adapting to climate change. Science 323:876

    Article  CAS  Google Scholar 

  • Frederich M, Pörtner HO (2000) Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. Am J Physiol- Reg Int Comp Physiol 279:R1531–R1538

    CAS  Google Scholar 

  • Freire CA, Cavassin F, Rodrigues EN et al (2003) Adaptive patterns of osmotic and ionic regulation, and the invasion of fresh water by the palaemonid shrimps. Comp Biochem Phys A 136:771–778. doi:dx.doi.org/10.1016/j.cbpb.2003.08.007

    Article  Google Scholar 

  • Freire CA, Onken H, Mcnamara JC (2008) A structure–function analysis of ion transport in crustacean gills and excretory organs. Biochemistry 151:272–304

    Google Scholar 

  • Garrard SL, Hunter RC, Frommel AY et al (2012) Biological impacts of ocean acidification: a postgraduate perspective on research priorities. Mar Biol. doi:10.1007/s00227-012-2033-3

    Google Scholar 

  • Gattuso J (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Global Planet Change 18:37–46. doi:10.1016/S0921-8181(98)00035-6

    Article  Google Scholar 

  • Gazeau F, Quiblier C, Jansen JM et al (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34:1–5. doi:10.1029/2006GL028554

    Article  Google Scholar 

  • Henry BYRP, Cameron JN (1983) The role of carbonic anhydrase in respiration, ion regulation and acid–base balance in the aquatic crab Callinectes sapidus and the terrestrial crab Gecarcinus lateraus. J Exp Biol 223:205–223

    Google Scholar 

  • Henry RP, Wheatly MG (1992) Interaction of respiration, ion regulation, and acid–base balance in the everyday life of aquatic crustaceans. Am Zool 32:407–416. doi:10.1093/icb/32.3.407

    CAS  Google Scholar 

  • Hernroth B, Sköld HN, Wiklander K (2012) Simulated climate change causes immune suppression and protein damage in the crustacean Nephrops norvegicus. Fish Shellfish Immunol 33(5):1095–1101. doi:10.1016/j.fsi.2012.08.011

    Article  CAS  Google Scholar 

  • Holman JD, Burnett KG, Burnett LE (2004) Effects of hypercapnic hypoxia on the clearance of Vibrio campbellii in the Atlantic blue crab, Callinectes sapidus Rathbun. Biol Bull 206:188–196

    Article  Google Scholar 

  • IPCC (2001) Climate Change 2001: the scientific basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Ishimatsu A, Dissanayake A (2010) Life threatened in acidic coastal waters. In: Ishimatsu A, Lie HJ (eds) Coastal environmental and ecosystem issues of the east china Sea. Nagasaki University, Tokyo

    Google Scholar 

  • Ituarte BR, López Mañanes A, Spivak E, Anger K (2008) Activity of Na+K+-ATPase in a freshwater shrimp’ Palaemonetes argentinus (Caridea, Palaemonidae): ontogenetic and salinity-induced changes. Aquat Biol 3:283–290. doi:10.3354/ab00089

    Article  Google Scholar 

  • Iwama BYGK, Heisler N (1991) Acid–base regulation during environmental hypercapnia in the rainbow trout (Oncorhynchus mykiss). J Exp Biol 18:1–18

    Google Scholar 

  • Kawaguchi S, Kurihara H, King R et al (2010) Will krill fare well under southern ocean acidification? Biol Lett 7:288–291. doi:10.1098/rsbl.2010.0777

    Article  Google Scholar 

  • Kennett JP, Ingram BL (1995) A 20, 000-year record of ocean circulation and climate change from the Santa Barbara basin. Nature 377:510–514. doi:10.1038/377510a0

    Article  CAS  Google Scholar 

  • Kroeker KJ, Micheli F, Gambi MC, Martz TR (2011) Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc Natl Acad Sci 108:14515–14520. doi:10.1073/pnas.1107789108

    Article  CAS  Google Scholar 

  • Kurihara H, Shimode S, Shirayama Y (2004) Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea). Mar Pollut Bull 49:721–727. doi:dx.doi.org/10.1016/j.marpolbul.2004.05.005

    Article  CAS  Google Scholar 

  • Kurihara H, Matsui M, Furukawa H et al (2008) Long-term effects of predicted future seawater CO2 conditions on the survival and growth of the marine shrimp Palaemon pacificus. J Exp Mar Biol Ecol 367:41–46. doi:10.1016/j.jembe.2008.08.016

    Article  CAS  Google Scholar 

  • Lejeusne C, Chevaldonné P, Pergent-Martini C et al (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evol 25:250–260. doi:10.1016/j.tree.2009.10.009

    Article  Google Scholar 

  • Madeira D, Narciso L, Cabral HN, Vinagre C (2012) Thermal tolerance and potential impacts of climate change on coastal and estuarine organisms. J Sea Res 70:32–41. doi:10.1016/j.seares.2012.03.002

    Article  Google Scholar 

  • Mantel LH, Farmer LL (1983) Osmotic and ionic regulation. In: Mantel LH (ed) The biology of crustacea. Internal anatomy and physiological regulation. Academic, New York

    Google Scholar 

  • Masui DC, Mantelatto FLM, Mcnamara JC et al (2009) Na +, K + -ATPase activity in gill microsomes from the blue crab, Callinectes danae, acclimated to low salinity: novel perspectives on ammonia excretion. Comp Biochem Phys A 153:141–148. doi:10.1016/j.cbpa.2009.01.020

    Article  Google Scholar 

  • Mayor D, Matthews C, Cook K et al (2007) CO2-Induced acidification affects hatching success in Calanus finmarchicus. Mar Ecol Prog Ser 350:91–97. doi:10.3354/meps07142

    Article  Google Scholar 

  • Mayor DJ, Anderson TR, Pond DW, Irigoien X (2009) Egg production and associated losses of carbon, nitrogen and fatty acids from maternal biomass in Calanus finmarchicus before the spring bloom. J Marine Syst 78:505–510. doi:10.1016/j.jmarsys.2008.12.019

    Article  Google Scholar 

  • Mayor DJ, Everett NR, Cook KB (2012) End of century ocean warming and acidification effects on reproductive success in a temperate marine copepod. J Plankton Res 34:258–262. doi:10.1093/plankt/fbr107

    Article  CAS  Google Scholar 

  • McDonald MR, McClintock JB, Amsler CD et al (2009) Effects of ocean acidification over the life history of the barnacle Amphibalanus amphitrite. Mar Ecol Prog Ser 385:179–187. doi:10.3354/meps08099

    Article  CAS  Google Scholar 

  • McMahon BR, Burnett LE, Fur PL (1984) Carbon dioxide excretion and carbonic anhydrase function in the Red Rock Crab Cancer productus. J Comp Physiol B 154:371–383. doi:10.1007/BF00684444

    Article  CAS  Google Scholar 

  • Mendonça NN, Masui DC, McNamara JC et al (2007) Long-term exposure of the freshwater shrimp macrobrachium olfersii to elevated salinity: effects on gill (Na+, K+)-ATPase [alpha]-subunit expression and K + -phosphatase activity. Comp Biochem Phys A 146:534–543. doi:10.1016/j.cbpa.2006.01.019

    Article  Google Scholar 

  • Metzger R, Sartoris FJ, Langenbuch M, Pörtner HO (2007) Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus. J Therm Biol 32:144–151. doi:dx.doi.org/10.1016/j.jtherbio.2007.01.010

    Article  Google Scholar 

  • Morritt D, Spicer JI (1993) A brief re-examination of the function and regulation of extracellular magnesium and its relationship to activity in crustacean arthropods. Comp Biochem Physiol A Physiol 106:19–23

    Article  Google Scholar 

  • Mucci A, Starr M, Gilbert D, Sundby B (2011) Acidification of lower St. Lawrence Estuary bottom waters. Atmos Ocean 49:206–218. doi:10.1080/07055900.2011.599265

    Article  CAS  Google Scholar 

  • Occhipinti-ambrogi A (2007) Global change and marine communities: alien species and climate change. Mar Pollut Bull 55:342–352. doi:10.1016/j.marpolbul.2006.11.014

    Article  CAS  Google Scholar 

  • Pane EF, Barry JP (2007) Extracellular acid–base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar Ecol Prog Ser 334:1–9. doi:10.3354/meps334001

    Article  CAS  Google Scholar 

  • Panikkar NK (1941) Osmoregulation in some palaemonid prawns. J Mar Biol Assoc UK 25:317–359

    Article  CAS  Google Scholar 

  • Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699. doi:10.1038/35021000

    Article  CAS  Google Scholar 

  • Peck LS, Clark MS, Morley SA et al (2009) Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct Ecol 23:248–256. doi:10.1111/j.1365-2435.2008.01537.x

    Article  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915. doi:10.1126/science.1111322

    Article  CAS  Google Scholar 

  • Philippart CJM, Anadón R, Danovaro R et al (2011) Impacts of climate change on European marine ecosystems: observations, expectations and indicators. J Exp Mar Biol Ecol 400:52–69. doi:10.1016/j.jembe.2011.02.023

    Article  Google Scholar 

  • Pörtner H-O, Farrell AP (2008) Physiology and climate change. Science 322:690–692. doi:10.1126/science.1163156

    Article  Google Scholar 

  • Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Oceanogr 60:705–718

    Article  Google Scholar 

  • Pörtner H-O, Farrell AP, Knust R et al (2009) Adaptating to climate change – response. Science 323:876–867

    Google Scholar 

  • Rabouille C, Conley DJ, Dai MH et al (2008) Comparison of hypoxia among four river-dominated ocean margins: the Changjiang (Yangtze), Mississippi, Pearl, and Rhone rivers. Cont Shelf Res 28:1527–1537. doi:dx.doi.org/10.1016/j.csr.2008.01.020

    Article  Google Scholar 

  • Range P, Chícharo MA, Ben-hamadou R et al (2011) Calcification, growth and mortality of juvenile clams Ruditapes decussatus under increased pCO2 and reduced pH: variable responses to ocean acidification at local scales ? J Exp Mar Biol Ecol 396:177–184. doi:10.1016/j.jembe.2010.10.020

    Article  Google Scholar 

  • Rankin CJ, Davenport J (1981) Animal osmoregulation. Blackie, Glasgow

    Google Scholar 

  • Raven J, Caldeira K, Elderfield H et al (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society, London

    Google Scholar 

  • Rice JC, Garcia SM (2011) Fisheries, food security, climate change, and biodiversity: characteristics of the sector and perspectives on emerging issues. ICES J Mar Sci 68:1343–1353. doi:10.1093/icesjms/fsr041

    Article  Google Scholar 

  • Robertson JD (1949) Ionic regulation in some marine invertebrates. J Exp Biol 26:182–200

    CAS  Google Scholar 

  • Robertson JD (1953) Further studies on ionic regulation in marine invertebrates. J Exp Biol 30:277–296

    CAS  Google Scholar 

  • Sabine CL, Feely RA, Gruber N et al (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371. doi:10.1126/science.1097403

    Article  CAS  Google Scholar 

  • Seibel BA, Walsh PJ (2003) Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance. J Exp Biol 206:641–650. doi:10.1242/jeb.00141

    Article  CAS  Google Scholar 

  • Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365:119–125. doi:10.1038/365119a0

    Article  CAS  Google Scholar 

  • Small D, Calosi P, White D et al (2010) Impact of medium-term exposure to CO2- enriched seawater on the physiological functions of the velvet swimming crab Necora puber. Aquat Biol 10:11–21. doi:10.3354/ab00266

    Article  Google Scholar 

  • Smith K (2011) We are seven billion. Nat Climat Change 1:331–336. doi:10.1038/nclimate1235

    Article  Google Scholar 

  • Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine “winners” and “losers”. J Exp Biol 213:912–920. doi:10.1242/jeb.037473

    Article  CAS  Google Scholar 

  • Spicer J, Raffo A, Widdicombe S (2007) Influence of CO2-related seawater acidification on extracellular acid–base balance in the velvet swimming crab Necora puber. Mar Biol 151:1117–1125. doi:10.1007/s00227-006-0551-6

    Article  Google Scholar 

  • Takasuka A, Oozeki Y, Aoki I (2007) Optimal growth temperature hypothesis: Why do anchovy flourish and sardine collapse or vice versa under the same ocean regime? Can J Fish Aquat Sci 64:768–776. doi:10.1139/f07-052

    Article  Google Scholar 

  • Takasuka A, Oozeki Y, Kubota H, Lluch-Cota SE (2008) Contrasting spawning temperature optima: Why are anchovy and sardine regime shifts synchronous across the North Pacific? Prog Oceanogr 77:225–232. doi:10.1139/F09-051

    Article  Google Scholar 

  • Tittensor DP, Mora C, Jetz W et al (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–1101. doi:10.1038/nature09329

    Article  CAS  Google Scholar 

  • Toews DP, Holeton GF, Heisler N (1983) Regulation of the acid–base status during environmental hypercapnia in the marine teleost fish Conger conger. J Exp Biol 107:9–20

    CAS  Google Scholar 

  • Touratier F, Goyet C (2011) Impact of the Eastern Mediterranean Transient on the distribution of anthropogenic CO2 and first estimate of acidification for the Mediterranean Sea. Deep-Sea Res I 58:1–15. doi:10.1016/j.dsr.2010.10.002

    Article  CAS  Google Scholar 

  • Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci 105:15452–15457. doi:10.1073/pnas.0803833105

    Article  CAS  Google Scholar 

  • Walther K, Sartorius FJ, Bock C, Pörtner HO (2009) Impact of anthropogenic ocean acidification on thermal tolerance of the spider crab Hyas araneus. Biogeosci Disc 6:2837–2861. doi:10.5194/bg-6-2207-2009

    Article  Google Scholar 

  • Wang B (2009) Hydromorphological mechanisms leading to hypoxia off the Changjiang estuary. Mar Environ Res 67:53–58, dx.doi.org/10.1016/j.marenvres.2008.11.001

    Article  CAS  Google Scholar 

  • Wheatly MG, Henry RP (1992) Extracellular and intracellular acid–base regulation in crustaceans. J Exp Zool 263:127–142. doi:10.1002/jez.1402630204

    Article  CAS  Google Scholar 

  • Whiteley N (2011) Physiological and ecological responses of crustaceans to ocean acidification. Mar Ecol Prog Ser 430:257–271. doi:10.3354/meps09185

    Article  CAS  Google Scholar 

  • Wittmann A, Held C, Pörtner H, Sartoris F (2010) Ion regulatory capacity and the biogeography of Crustacea at high southern latitudes. Polar Biol 33:919–928. doi:10.1007/s00300-010-0768-1

    Article  Google Scholar 

  • Zhang J, Gilbert D, Gooday AJ et al (2010) Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development. Biogeosci 7:1443–1467. doi:10.5194/bg-7-1443-2010

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awantha Dissanayake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dissanayake, A. (2014). Ocean Acidification and Warming Effects on Crustacea: Possible Future Scenarios. In: Goffredo, S., Dubinsky, Z. (eds) The Mediterranean Sea. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6704-1_20

Download citation

Publish with us

Policies and ethics