Skip to main content

Land Use and Land Cover Changes and Their Impacts on Hydroclimate, Ecosystems and Society

  • Chapter
  • First Online:
Book cover Climate Science for Serving Society

Abstract

This chapter presents recent advances in the understanding of the effect of land cover/land use changes on the hydrologic cycle, and identifies current gaps in the knowledge needed for useful decision-making and water resource management. Research achievements within a framework of Earth System Models (ESM) are introduced, and research needs and future challenges are identified. Land surface provides the lower boundary condition to the atmosphere over continents by controlling the fluxes of momentum, heat, water, and materials such as carbon. In turn, land surface conditions are substantially influenced by atmospheric conditions on various temporal scales. As such, a land-atmosphere coupled system is established through biogeochemical feedbacks. Current land surface models exhibit a wide variety of responses to the same forcings, suggesting the need for increased research at the land-atmosphere interface. Indeed, all Earth System Models require the inclusion and validation of the processes that pertain to the biogeochemical feedbacks. Anthropogenic activities that result in land use and land cover changes affect the land surface characteristics and consequently the land-atmosphere feedbacks and coupling strength. Therefore, human activities play a role in the land-atmosphere coupling system, and thus, in the climate system. Water is essential to societal needs that require the construction of reservoirs, extraction of ground water, irrigation, changes in land use, urbanization among many other influences. The extent and sustainability of those interferences in the natural system remains to be assessed at global scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcaraz-Segura D, Paruelo JM, Cabello J (2006) Identification of current ecosystem functional types in the Iberian Peninsula. Glob Ecol Biogeogr 15:200–212

    Article  Google Scholar 

  • Alcaraz-Segura D, Cabello J, Paruelo J (2009) Baseline characterization of major Iberian vegetation types based on the NDVI dynamics. Plant Ecol 202(1):13–29. doi:10.1007/s11258-008-9555-2

    Article  Google Scholar 

  • Alcaraz-Segura D, Chuvieco E, Epstein HE, Kasischke ES, Trishchenko A (2010a) Debating the greening vs. browning of the North American boreal forest: differences between satellite datasets. Glob Chang Biol 16:760–770

    Article  Google Scholar 

  • Alcaraz-Segura D, Liras E, Tabik S, Paruelo J, Cabello J (2010b) Evaluating the consistency of the 1982–1999 NDVI trends in the Iberian Peninsula across four time-series derived from the AVHRR sensor: LTDR, GIMMS, FASIR, and PAL-II. Sensors 10:1291–1314

    Article  Google Scholar 

  • Alcaraz-Segura D, Paruelo JM, Epstein HE, Cabello J (2013a) Environmental and human controls of ecosystem functional diversity in temperate South America. Remote Sens 5(1):127–154. doi:10.3390/rs5010127, http://dx.doi.org/10.3390/rs5010127

  • Alcaraz-Segura D, Berbery HE, Müller O, Paruelo JM (2013b) Characterizing and monitoring climate regulation services. In: Alcaraz-Segura D, Di Bella CM, Straschnoy JV (eds) Earth observation of ecosystem services. CRC Press. ISBN: 9781466505889 http://www.crcpress.com/product/isbn/9781466505889 (in press)

  • Anderson-Teixeira KJ, Snyder PK, Twine TE, Cuadra SV, Costa MH, DeLucia EH (2012) Climate-regulation services of natural and agricultural ecoregions of the Americas. Nat Climate Change 2(3):177–181. doi:10.1038/nclimate1346

    Article  Google Scholar 

  • Baidya Roy S, Avissar R (2002) Impact of land use/land cover change on regional hydrometeorology in Amazonia. J Geophys Res 107(D20):LBA 4–1–LBA 4–12

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449. doi:10.1126/science.1155121

    Article  CAS  Google Scholar 

  • Brando PM, Goetz SJ, Baccini A, Nepstad DC, Beck PSA, Christman MC (2010) Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proc Natl Acad Sci 107:14685

    Article  CAS  Google Scholar 

  • Budyko MI (1974) Climate and life, English edn. Academic Press, New York

    Google Scholar 

  • Cai W, Cowan T, Briggs P, Raupach M (2009) Rising temperature depletes soil moisture and exacerbates severe drought conditions across southeast Australia. Geophys Res Lett 36:L21709. doi:10.1029/2009GL040334

    Article  Google Scholar 

  • Chapin FS III, Randerson JT, McGuire AD, Foley JA, Field JA (2008) Changing feedbacks in the climate-biosphere system. Front Ecol Environ 6:313–320. doi:10.1890/080005

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: model description and implementation. Mon Weather Rev 129:569–585

    Article  Google Scholar 

  • Choudhury BJ (1999) Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. J Hydrol 216:99–110. doi:10.1016/S0022-1694(98)00293-5

    Article  Google Scholar 

  • Church TM (1996) An underground route for the water cycle. Nature 380:579–580

    Article  CAS  Google Scholar 

  • Costanza R, d‘Arge R, de Groot R, Farber S, Grasso M, Hannon B, Naeem S, Limburg K, Paruelo J, O’Neill RV, Raskin R, Sutton P, van den Belt M (1998) The value of ecosystem services: putting the issue in perspective. Ecol Econ 25:67–72

    Article  Google Scholar 

  • de Rosnay P, Polcher J, Laval K, Sabre M (2003) Integrated parameterization of irrigation in the land surface model ORCHIDEE. Validation over Indian Peninsula. Geophys Res Lett 30(19):1986. doi:10.1029/2003GL018024

    Article  Google Scholar 

  • Dirmeyer PA, Gao XA, Zhao M, Guo ZC, Oki T, Hanasaki N (2006) GSWP-2 multimodel analysis and implications for our perception of the land surface. Bull Am Meteorol Soc 87:1381–1397

    Article  Google Scholar 

  • Douville H, Chauvin F, Broqua H (2001) Influence of soil moisture on the Asian and African monsoons. Part1: mean monsoon and daily precipitation. J Clim 14:2381–2403

    Article  Google Scholar 

  • Ek M, Mitchell K, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley D (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 108:8851. doi:10.1029/2002JD003296

    Article  Google Scholar 

  • Foley JA, Asner GP, Costa MH, Coe MT, DeFries R, Gibbs HK, Howard EA et al (2007) Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon basin. Front Ecol Environ 5(1):25–32

    Article  Google Scholar 

  • Gedney N, Valdes PJ (2000) The effect of Amazonian deforestation on the northern hemisphere circulation and climate. Geophys Res Lett 27:3053–3056

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183

    Google Scholar 

  • Gornitz V, Rosenzweig C, Hillel D (1997) Effects of anthropogenic intervention in the land hydrologic cycle on global sea level rise. Glob Planet Change 14:147–161

    Article  Google Scholar 

  • Guerschman JP, Paruelo JM, Burke IC (2003) Land use impacts on the normalized difference vegetation index in temperate Argentina. Ecol Appl 13:616–628

    Article  Google Scholar 

  • Guimberteau M, Laval K, Perrier A, Polcher J (2011) Global effect of irrigation and its impact on the onset of the Indian summer monsoon. Clim Dyn. doi:10.1007/s00382-011-1252-5

    Google Scholar 

  • Haddeland I and coauthors (2011) Multimodel estimate of the global terrestrial water balance: setup and first results. J Hydrometeorol 12:869–884

    Google Scholar 

  • Haddeland I, Lettenmaier DP, Skaugen T (2006) Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins. J Hydrol 324(1–4):210–223. doi:10.1016/j.jhydrol.2005.09.028

    Article  Google Scholar 

  • Hanasaki N, Kanae S, Oki T (2006) A reservoir operation scheme for global river routing models. J Hydrol 327(1–2):22–41. doi:10.1016/j.jhydrol.2005.11.011

    Article  Google Scholar 

  • Hanasaki N, Inuzuka T, Kanae S, Oki T (2010) An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J Hydrol 384(3–4):232–244

    Article  Google Scholar 

  • Hoare D, Frost P (2004) Phenological description of natural vegetation in southern Africa using remotely-sensed vegetation data. Appl Veg Sci 7:19–28

    Article  Google Scholar 

  • IPCC (2011) Summary for policymakers. In: Field CB et al (eds) Intergovernmental panel on climate change special report on managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, New York

    Google Scholar 

  • Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423:528–531

    Article  CAS  Google Scholar 

  • Kanae S, Oki T, Musiake K (2001) Impact of deforestation on regional precipitation over the Indochina Peninsula. J Hydrometeorol 2:51–70

    Article  Google Scholar 

  • Konikow LF (2011) Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys Res Lett 38, L17401

    Article  Google Scholar 

  • Körner C (1994) Scaling from species to vegetation: the usefulness of functional groups. In: Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function. Springer, Berlin, pp 117–139

    Chapter  Google Scholar 

  • Korzun VI (1978) World water balance and water resources of the earth, studies and reports in hydrology, vol 25. UNESCO, Paris

    Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Kabat P, Jiménez B, Miller KA, Oki T, Sen Z, Shiklomanov IA (2007) Freshwater resources and their management. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 173–210

    Google Scholar 

  • Lee S-J, Berbery EH (2012) Land cover change effects on the climate of the La Plata basin. J Hydrometeor 13:84–102

    Article  Google Scholar 

  • Lee E, Chase TN, Rajagopalan B, Barry RG, Biggs TW, Lawrence PJ (2009) Effects of irrigation and vegetation activity on early Indian summer monsoon variability. Int J Climatol 29:573–581

    Article  Google Scholar 

  • Lloyd D (1990) A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Int J Remote Sens 11:2269–2279

    Article  Google Scholar 

  • Mahmood R, Pielke RA, Hubbard KG, Niyogi D, Bonan G, Lawrence P, Mcnider R, Mcalpine C, Etter A, Gameda S (2010) Impacts of land use/land cover change on climate and future research priorities. Bull Am Meteorol Soc 91:37–46

    Article  Google Scholar 

  • McNaughton KG, Spriggs TW (1989) An evaluation of the Priestley Taylor equation. IAHS Press, Wallingford, pp 89–104, IAHS publ 177

    Google Scholar 

  • Milchunas DG, Lauenroth WK (1995) Inertia in plant community structure: state changes after cessation of nutrient enrichment stress. Ecol Appl 5:452–458

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Millennium Ecosystem Assessment Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Moiwo JP, Wenxi L, Tao F (2012) GRACE, GLDAS and measured groundwater data products show water storage loss in Western Jilin, China. Water Sci Technol 65(9):1606–1614. doi:10.2166/wst.2012.053

    Article  Google Scholar 

  • Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–766. doi:10.2307/2401901

    Article  Google Scholar 

  • Nemani RR, Running SW (1997) Land cover characterization using multitemporal red, near-IR, and thermal-IR data from NOAA/AVHRR. Ecol Appl 7:79–90

    Article  Google Scholar 

  • Oesterheld M, DiBella CM, Kerdiles H (1998) Relation between NOAA-AVHRR satellite data and stocking rate of rangelands. Ecol Appl 8:207–212

    Article  Google Scholar 

  • Oki T (1999) The global water cycle. In: Browning K, Gurney R (eds) Global energy and water cycles. Cambridge University Press, Cambridge/New York, pp 10–27

    Google Scholar 

  • Oki T (2005) The hydrologic cycles and global circulation. In: Anderson MG (ed) Encyclopedia of hydrological sciences. Wiley, Chichester

    Google Scholar 

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313(5790):1068–1072

    Article  CAS  Google Scholar 

  • Oki T, Musiake K, Matsuyama H, Masuda K (1995) Global atmospheric water balance and runoff from large river basins. Hydrol Proc 9:655–678

    Article  Google Scholar 

  • Oki T, Nishimura T, Dirmeyer P (1999) Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). J Meteorol Soc Jpn 77:235–255

    Google Scholar 

  • Oki T, Entekhabi D, Harrold T (2004) The global water cycle. In: Sparks R, Hawkesworth C (eds) State of the planet: frontiers and challenges in geophysics, No. 150 in geophysical monograph series. AGU Publication, Washington, DC, p 414

    Google Scholar 

  • Oki T, Valeo C, Heal K (eds) (2006) Hydrology 2020: an integrating science to meet world water challenges. IAHS Press, Wallingford, IAHS Publication, 300

    Google Scholar 

  • Paruelo JM, Lauenroth WK (1995) Regional patterns of Normalized Difference Vegetation Index in North American shrublands and grasslands. Ecology 76:1888–1898

    Article  Google Scholar 

  • Paruelo JM, Epstein HE, Lauenroth WK, Burke IC (1997) ANPP estimates from NDVI for the central grassland region of the United States. Ecology 78:953–958

    Article  Google Scholar 

  • Paruelo JM, Jobbagy EG, Sala OE (2001) Current distribution of ecosystem functional types in temperate South America. Ecosystems 4:683–698

    Article  Google Scholar 

  • Paruelo J, Alcaraz-Segura D, Volante JN (2011) El seguimiento del nivel de provisión de los servicios ecosistémicos. In: Laterra P, Jobbágy EG, Paruelo JM (eds) Valoración de servicios ecosistémicos: conceptos, herramientas y aplicaciones para el ordenamiento territorial. Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, pp 141–160

    Google Scholar 

  • Pettorelli N and coauthors (2005) Trends in ecology & evolution using the satellite-derived NDVI to assess ecological responses to environmental change. http://www.sciencedirect.com/science/article/pii/S016953470500162X

  • Phillips and coauthors (2009) Drought sensitivity of the Amazon rainforest. Science 323(5919):1344–1347. http://www.sciencemag.org/content/323/5919/1344.short

  • Pielke RA and coauthors (2007) An overview of regional land-use and land-cover impacts on rainfall. Tellus 59B:587–601

    Google Scholar 

  • Pielke RA, Avissar R (1990) Influence of structure on local and regional climate. Landsc Ecol 4:133–155

    Article  Google Scholar 

  • Pielke RA, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DS, Running SW (2002) The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos Trans R Soc Lond A Math Phys Eng Sci 360:1705

    Google Scholar 

  • Pielke RA Sr, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Goldewijk KK, Nair U, Betts R, Fall S, Reichstein M, Kabat P, de Noblet N (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. WIREs Clim Change 2:828–850. doi:10.1002/wcc.144

    Article  Google Scholar 

  • Pitman AJ and coauthors (2009) Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys Res Lett 36:L14814. doi:10.1029/2009GL039076

    Google Scholar 

  • Pokhrel YN, Hanasaki N, Yeh PJ-F, Yamada TJ, Kanae S, Oki T (2012a) Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat Geosci. Advance Online Publication. doi:10.1038/Ngeo1476

  • Pokhrel Y, Hanasaki N, Koirala S, Cho J, Yeh PJ-F, Kim H, Kanae S, Oki T (2012b) Incorporating anthropogenic water regulation modules into a land surface model. J Hydrometeor 13:255–269. doi: 10.1175/JHM-D-11-013.1

    Google Scholar 

  • Porporato A, Daly E, Rodriguez‐Iturbe I (2004) Soil water balance and ecosystem response to climate change. Am Naturalist 164:625–632

    Article  Google Scholar 

  • Potter CS, Brooks V (1998) Global analysis of empirical relations between annual climate and seasonality of NDVI. Int J Remote Sens 19:2921–2948

    Article  Google Scholar 

  • Reale O, Dirmeyer P (2000) Modeling the effects of vegetation on Mediterranean climate during the Roman Classical Period: Part I: climate history and model sensitivity. Glob Planet Change 25:163–184

    Article  Google Scholar 

  • Reale O, Shukla J (2000) Modeling the effects of vegetation on Mediterranean climate during the Roman Classical Period: Part II. Model simulation. Glob Planet Change 25:185–214

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. doi:10.1038/460789a

    Article  CAS  Google Scholar 

  • Roderick ML, Farquhar GD (2011) A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour Res 47:W00G07. doi:10.1029/2010WR009826

    Google Scholar 

  • Saeed F, Hagemann S, Jacob D (2011) A framework for the evaluation of South Asian summer monsoon in a regional climate model applied to REMO. Int J Climatol. doi:10.1002/joc.2285

    Google Scholar 

  • Shiklomanov IA (ed) (1997) Assessment of water resources and water availability in the world. Background report for the comprehensive assessment of the freshwater resources of the world, WMO/SEI. Geneva, Switzerland

    Google Scholar 

  • Stephenson NL (1990) Climatic control of vegetation distribution: the role of the water balance. Am Naturalist 135:649–670

    Article  Google Scholar 

  • Stohlgren TJ, Chase TN, Pielke RA Sr, Kittel TGF, Baron JS (1998) Evidence that local land use practices influence regional climate, vegetation, and stream flow patterns in adjacent natural areas. Glob Change Policy 4:495–504

    Article  Google Scholar 

  • Taylor CM and coauthors (2011) New perspectives on land–atmosphere feedbacks from the African Monsoon Multidisciplinary analysis. Atmos Sci Lett 12:38–44. doi:10.1002/asl.336

    Google Scholar 

  • Teuling AJ and coauthors (2010) Contrasting response of European forest and grassland energy exchange to heatwaves. Nat Geosci 3:722–727. doi:10.1038/ngeo950

    Google Scholar 

  • Tucker CJ, Sellers PS (1986) Satellite remote-sensing of primary production. Int J Remote Sens 7:1395–1416

    Article  Google Scholar 

  • Tuinenburg OA, Hutjes RWA, Jacobs CMJ, Kabat P (2011) Diagnosis of local land–Atmosphere feedbacks in India. J Clim 24:251–266

    Article  Google Scholar 

  • Valentini R, Baldocchi DD, Tenhunen JD, Kabat P (1999) Ecological controls on land-surface atmospheric interactions. In: Integrating hydrology, ecosystem dynamics and biogeochemistry in complex landscapes. Wiley, Berlin, pp 105–116

    Google Scholar 

  • van den Hurk B, Martin B, Paul D, Andy P, Jan P, Joe S (2011) Acceleration of land surface model development over a decade of glass. Bull Am Meteor Soc 92(12):1593–1600. doi:10.1175/BAMS-D-11-00007.1

    Google Scholar 

  • Virginia RA, Wall DH, Levin SA (2001) Principles of ecosystem function. Encyclopedia of biodiversity. Academic Press, San Diego, pp 345–352.

    Google Scholar 

  • Volante JN, Alcaraz-Segura D, Mosciaro MJ, Viglizzo EF, Paruelo JM (2012) Ecosystem functional changes associated with land clearing in NW Argentina. Agric Ecosyst Environ 154:12–22

    Article  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561. doi:10.1038/nature09440

    Article  Google Scholar 

  • Wada Y et al (2010) Global depletion of groundwater resources. Geophys Res Lett 37, L20402

    Article  Google Scholar 

  • Weaver CP, Avissar R (2001) Atmospheric disturbances caused by human modification of the landscape. Bull Am Meteorol Soc 82:269–281

    Article  Google Scholar 

  • Werth D, Avissar R (2002) The local and global effects of Amazon deforestation. J Geophys Res 107:8087

    Article  Google Scholar 

  • WHO/UNICEF (2012) Progress on drinking water and sanitation: 2012 update, WHO/UNICEF Joint Monitoring Programme for Water Supply and Sanitation. http://www.who.int/water_sanitation_health/publications/2012/jmp2012.pdf

  • Wood EF, Roundy JK, Troy TJ, van Beek LPH, Bierkens MFP, Blyth E, de Roo A, Döll P, Mike E, Famiglietti J, Gochis D, van de Giesen N, Houser P, Jaffé PR, Kollet S, Lehner B, Lettenmaier DP, Peters-Lidard C, Sivapalan M, Sheffield J, Wade A, Whitehead P (2011) Hyperresolution global land surface modeling: meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour Res 47:W05301. doi:10.1029/2010WR010090

  • Wright JP, Naeem S, Hector A, Lehman C, Reich PB, Schmid B, Tilman D (2006) Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecol Lett 9:111–120

    Article  Google Scholar 

  • Yang D, Shao W, Yeh PJ-F, Yang H, Kanae S, Oki T (2009) Impact of vegetation coverage on regional water balance in the nonhumid regions of China. Water Resour Res 45:W00A14. doi:10.1029/2008WR006948

    Article  Google Scholar 

  • Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940

    Article  CAS  Google Scholar 

  • Zhang L, Hickel K, Dawes WR, Chiew FHS, Western AW, Briggs PR (2004) A rational function approach for estimating mean annual evapotranspiration. Water Resour Res 40:W02502. doi: 10.1029/2003WR002710

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taikan Oki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oki, T., Blyth, E.M., Berbery, E.H., Alcaraz-Segura, D. (2013). Land Use and Land Cover Changes and Their Impacts on Hydroclimate, Ecosystems and Society. In: Asrar, G., Hurrell, J. (eds) Climate Science for Serving Society. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6692-1_7

Download citation

Publish with us

Policies and ethics