Skip to main content

Improving Understanding of the Global Hydrologic Cycle

Observation and Analysis of the Climate System: The Global Water Cycle

  • Chapter
  • First Online:
Climate Science for Serving Society

Abstract

Understanding the complexity of the hydrological cycle is central to understanding a wide range of other planetary geological, atmospheric, chemical, and physical processes. Water is also central to other core economic, social, and political issues such as poverty, health, hunger, environmental sustainability, conflict, and economic prosperity. As society seeks to meet demands for goods and services for a growing population, we must improve our understanding of the fundamental science of the hydrological cycle, its links with related global processes, and the role it plays in ecological and societal well-being. At the same time, human influences on the character and dynamics of the water cycle are growing rapidly. Central to solving these challenges is the need to improve our systems for managing, sharing, and analyzing all kinds of water data, and our ability to model and forecast aspects of both the hydrological cycle and the systems we put in place to manage human demands for water. We need to improve our understanding of each of the components of the hydrological water balance at all scales, and to understand the spatial and temporal variability in the components of the water cycle. This chapter provides a short summary of current WCRP efforts and addresses four primary research challenges:

  1. 1.

    The collection of more comprehensive data and information on all aspects of the hydrologic cycle and human uses of water, at enhanced spatial and temporal resolution and increased precision;

  2. 2.

    Improved management and distribution of these data;

  3. 3.

    Improved representation of the anthropogenic manipulations of the water cycle in the coupled land-atmosphere-ocean models used to forecast climate variations and change at both seasonal to interannual, and decade to century, time scales; and

  4. 4.

    Expanded research at the intersection of hydrological sciences and the technical, social, economic, and political aspects of freshwater management and use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Good and more comprehensive summaries of WCRP programs can be found online.

  2. 2.

    GEWEX was formerly “Global Water and Energy Cycle Experiment” and is now “Global and Regional Energy and Water Exchanges.” CLIVAR is the “Climate Variability and Predictability” program.

  3. 3.

    From the WCRP website: http://www.wcrp-climate.org/waterclim.shtml

  4. 4.

    Some of these needs will be addressed by planned satellite missions, notably the Surface Water and Ocean Topography mission (SWOT), a joint venture of NASA and CNES, the French space agency.

References

  • Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S (2003) Global estimates of water withdrawals and availability under current and future ‘business-as-usual’ conditions. Hydrol Sci J 48:339–348

    Article  Google Scholar 

  • Alcamo JH, Grassl H, Hoff P, Kabat F, Lansigan R, Lawford D, Lettenmaier, Lévêque C, Meybeck M, Naiman R, Pahl-Wostl C, Vörösmarty C (2005) Science framework and implementation activities, global water system project, Bonn, 76 pp

    Google Scholar 

  • Alcamo J, Flörke M, Mӓrker M (2007) Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol Sci J 52(2):247–275

    Article  Google Scholar 

  • Allan RP, Soden BJ (2007) Large discrepancy between observed and simulated precipitation trends in the ascending and descending branches of the tropical circulation. Geophys Res Lett 34:L18705. doi:10.1029/2007GL031460

    Article  Google Scholar 

  • American Water Works Association (AWWA) (1997) Climate change and water resources. J Am Water Works Assoc 89(11):107–110

    Google Scholar 

  • Amiotte-Suchet P, Probst J-L, Ludwig W (2003) Worldwide distribution of continental rock lithology: implications for atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochem Cycles 17:7.1–7.13

    Article  CAS  Google Scholar 

  • Baumgartner F, Reichel E (1975) The world water balance: mean annual global, continental and maritime precipitation, evaporation and runoff. Elsevier, München/Wien

    Google Scholar 

  • Behera S, Yamagata T (2010) Imprint of the El Niño Modoki on decadal sea level changes. Gepophys Res Lett 37:L23702. doi:10.1029/2010GL045936

    Google Scholar 

  • Boyer TP, Levitus S, Antonov JI, Locarnini RA, Garcia HE (2005) Linear trends in salinity for the World Ocean, 1955–1998. Geophys Res Lett 32, L01604. doi:10.1029/2004GL021791

    Article  Google Scholar 

  • California Department of Water Resources (2009) California water plan update 2009. Sacramento. http://www.waterplan.water.ca.gov/cwpu2009/index.cfm

  • Chao BF (1995) Anthropogenic impact on global geodynamics due to reservoir water impoundment. Geophys Res Lett 22:3529–3532

    Article  Google Scholar 

  • Chao BF, O’Connor WP (1988) Global surface-water-induced seasonal variations in the Earth’s rotation and gravitational field. Geophys J 94(2):263–270. doi:10.1111/j.1365-246X.1988.tb05900.x

    Article  Google Scholar 

  • Cooley H, Donnelly K (2012) Hydraulic fracturing and water resources: separating the frack from the fiction. Pacific Institute, Oakland, 34 pp

    Google Scholar 

  • Cooley H, Fulton J, Gleick PH (2011) Water for energy: future water needs for electricity in the intermountain west. Pacific Institute, Oakland, 63 pp

    Google Scholar 

  • Dettinger MD, Ralph FM, Das T, Neiman PJ, Cayan DR (2011) Atmospheric rivers, floods and the water resources of California. Water 3(2):445–478

    Article  Google Scholar 

  • Dirmeyer PA, Gao XA, Zhao M, Guo ZC, Oki T, Hanasaki N (2006) GSWP-2 multimodel analysis and implications for our perception of the land surface. Bull Am Meteorol Soc 87:1381–1397

    Article  Google Scholar 

  • Durack PJ, Wijffels SE (2010) Fifty year trends in global ocean salinities and their relationship to broad-scale warming. J Clim 23:4,342–4,362

    Article  Google Scholar 

  • Durack PJ, Wijffels SE, Matear RJ (2012) Ocean salinities reveal strong global water cycle intensification during 1950–2000. Science 336(6080):455–458. doi:10.1126/science 1212222

    Article  CAS  Google Scholar 

  • Falkenmark M, Rockström J (2004) Balancing water for humans and nature. Earthscan, London, 247pp

    Google Scholar 

  • Famiglietti JS (2004) Remote sensing of terrestrial water storage, soil moisture and surface waters. In: Sparks RSJ, Hawkesworth CJ (eds) The state of the planet: frontiers and challenges in geophysics, vol 150, Geophysical monograph series. American Geophysical Union [S.l.]/International Union of Geodesy and Geophysics, Washington, DC, pp 197–207

    Chapter  Google Scholar 

  • Famiglietti J, Murdoch L, Lakshmi V, Hooper R (2009) Rationale and strategy for a community modeling platform in the hydrologic sciences, Community Modeling in Hydrologic Science. Report of the CHyMP scoping workshop held March 26–27, 2008, Washington, DC, CUAHSI technical report #8, April 12. doi:10.4211/techrpts.200911.tr8

    Google Scholar 

  • Famiglietti J, Murdoch L, Lakshmi V, Hooper R (2010) Towards a framework for community modeling in hydrologic science. Report from the 2nd workshop on a Community Hydrologic Modeling Platform (CHyMP): blueprint for a community hydrologic modeling platform, Memphis, CUAHSI Technical report #9, March 31– April 1, 2009. doi:10.4211/techrpts.20100616.tr9

  • Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJ, Syed TH, Swenson SC, de Linage CR, Rodell M (2011a) Satellites measure recent rates of groundwater depletion in California’s Central Valley, Geophys Res Lett 38, L03403. doi:10.1029/2010GL046442

    Article  Google Scholar 

  • Famiglietti J, Murdoch L, Lakshmi V, Arrigo J (2011b) Establishing a framework for community modeling in hydrologic science. Report from the 34d workshop on a Community Hydrologic Modeling Platform (CHyMP): a strategic and implementation plan, CUAHSI technical report #10, Irvine, March 15–17, 2011

    Google Scholar 

  • FC-GWSP (Framing Committee of the Global Water System Project) (2004a) Humans transforming the global water system. Eos AGU Trans 85(509):513–514

    Google Scholar 

  • FC-GWSP (Framing Committee of the Global Water System Project) (2004b) The global water system project: science framework and implementation activities. Earth System Science Partnership Project. Global Water System Project Office, Bonn

    Google Scholar 

  • Fekete BM, Vörösmarty CJ, Grabs W (2002) High resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem Cycles 6(3):1. doi:10.1029/1999GB001254

    Google Scholar 

  • Fekete BM, Wisser D, Kroeze C, Mayorga E, Bouwman L, Wollheim WM, Vorosmarty C (2010) Millennium Ecosystem Assessment scenario drivers (1970–2050): climate and hydrological alterations. Global Biogeochem Cycles 24:GB0A12. doi:10.1029/2009GB003593

    Article  CAS  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycle: past, present and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Gleick PH (2000) Water: the potential consequences of climate variability and change for the water resources of the United States. U.S. Global Change Research Program, Washington, DC, 151 pp

    Google Scholar 

  • Gleick PH (2003) Global freshwater resources: soft-path solutions for the 21st century. Science 302:1524–1528

    Article  CAS  Google Scholar 

  • Gleick PH, Palaniappan M (2010) Peak water: conceptual and practical limits to freshwater withdrawal and use. Proc Natl Acad Sci (PNAS) 107(25):11155–11162. www.pnas.org/cgi/doi/10.1073/pnas.1004812107

  • Gleick PH, Christian-Smith J, Cooley H (2011) Water-use efficiency and productivity: rethinking the basin approach. Water Int 36(7):784–798. doi:10.1080/02508060.2011.631873, http://dx.doi.org/

    Article  Google Scholar 

  • Group on Earth Observations (GEO) (2007) Strategic guidance for current and potential contributors to GEOSS. http://www.earthobservations.org/documents.shtml

  • Group on Earth Observations (GEO) (2009) Implementation guidelines for the GEOSS data sharing principles. Group on Earth Observations, Geneva

    Google Scholar 

  • Haddeland I, Lettenmaier DP, Skaugen T (2006a) Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins. J Hydrol 324:210–223

    Article  Google Scholar 

  • Haddeland I, Skaugen T, Lettenmaier DP (2006b) Anthropogenic impacts on continental surface water fluxes. Geophys Res Lett 33, L08406. doi:10.1029/2006GL026047

    Article  Google Scholar 

  • Haddeland I, Skaugen T, Lettenmaier DP (2007) Hydrologic effects of land and water management in North America and Asia: 1700–1992. Hydrol Earth Syst Sci 11(2):1035–1045

    Article  Google Scholar 

  • Haddeland I, Clark D, Franssen W, Ludwig F, Voss F, Arnell NW, Bertrand N, Best M, Folwell S, Gerten D, Gomes S, Gosling SN, Hagemann S, Hanasaki N, Harding R, Heinke J, Kabat P, Koirala S, Oki T, Polcher J, Stacke T, Viterbo P, Weedon GP, Yeh P (2011) Multi-model estimate of the terrestrial global water balance: setup and first results. J Hydrometeorol 12:869–884. doi:10.1175/2011JHM1324.1

    Article  Google Scholar 

  • Hanasaki N, Kanae S, Oki T (2006) A reservoir operation scheme for global river routing models. J Hydrol 327:22–41

    Article  Google Scholar 

  • Hanasaki N, Kanae S, Oki T, Masuda K, Motoya K, Shirakawa N, Shen Y, Tanaka K (2008a) An integrated model for the assessment of global water resources – Part 1: model description and input meteorological forcing. Hydrol Earth Syst Sci 12:1007–1025

    Article  Google Scholar 

  • Hanasaki N, Kanae S, Oki T, Masuda K, Motoya K, Shirakawa N, Shen Y, Tanaka K (2008b) An integrated model for the assessment of global water resources – Part 2: applications and assessments. Hydrol Earth Syst Sci 12:1027–1037

    Article  Google Scholar 

  • Hanasaki N, Inuzuka T, Kanae S, Oki T (2010) An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J Hydrol 384:232–244

    Article  Google Scholar 

  • Harmon T, Ambrose R, Gilbert R, Fisher J, Stealey M (2007) High-resolution river hydraulic and water quality characteristics using rapidly deployable networked infomechanical systems. Environ Eng Sci 24(2):151–159

    Article  CAS  Google Scholar 

  • He B, Kanae S, Oki T, Hirabayashi Y, Yamashiki Y, Takara K (2011) Assessment of global nitrogen pollution in rivers using an integrated biogeochemical modeling framework. Water Res 45(8):2573–2586

    Article  CAS  Google Scholar 

  • Hirschboeck KK (2009) Future hydroclimatology and the research challenges of a post-stationary world. J Contemp Water Res Educ 142(1):4–9. http://onlinelibrary.wiley.com/doi/10.1111/j.1936-704X.2009.00045.x/pdf

    Google Scholar 

  • Hornberger C (2001) A plan for a new science initiative on the global water cycle. Chapter 5: An integrated water cycle science plan. Report to the USGCRP from the Water Cycle Study Group. http://www.usgcrp.gov/usgcrp/Library/watercycle/wcsgreport2001/wcsg2001chapter5.htm

  • Huntington T (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95

    Article  Google Scholar 

  • ICSU (International Council for Science) (2004) ICSU report of the CSPR assessment panel on scientific data and information. ICSU, Paris

    Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • IPCC (2012) Summary for policymakers. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change, Cambridge University Press, Cambridge/New York, pp 1–19

    Google Scholar 

  • Jin YF, Randerson JT, Goulden ML (2011) Continental-scale net radiation and evapotranspiration estimated using MODIS satellite observations. Remote Sens Environ 115(9):2302–2319. doi:10.1016/j.rse.2011.04.031, Published: SEP 15 2011

    Article  Google Scholar 

  • Karl TR, Melillo JM, Peterson TC (eds) (2009) Global change impacts in the United States. Cambridge University Press, Cambridge, 188 pp

    Google Scholar 

  • Kollet SJ, Maxwell RM (2008) Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour Res 44, W02402. doi:10.1029/2007WR006004

    Article  Google Scholar 

  • Korzun VI (1978) World water balance and water resources of the earth, studies and reports in hydrology, vol 25. UNESCO, Paris

    Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Kabat P, Jiménez B, Miller KA, Oki T, Sen Z, Shiklomanov IA (2007) Freshwater resources and their management. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 173–210

    Google Scholar 

  • L’vovitch MI (1973) The global water balance. Trans Am Geophys Union 54:28–42

    Article  Google Scholar 

  • Landerer FW, Swenson SC (2011) Accuracy of scaled GRACE terrestrial water storage estimates. Wat Resour Res 48(4). doi:10.1029/2011WR011453

  • Lavers DA, Allan RP, Wood EF, Villarini G, Brayshaw J, Wade J (2011) Winter floods in Britain are connected to atmospheric rivers. Geophys Res Lett 38:L23803. doi:10.1029/2011GL049783, 2011

    Article  Google Scholar 

  • Lazo JK, Morss RE, Demuth JL (2009) 300 Billion served: sources, perceptions, uses, and values of weather forecasts. Bull Am Meteorol Soc 90:785–798

    Article  Google Scholar 

  • Lehner B, Reidy Liermann C, Revenga C, Fekete B, Vörösmarty CJ, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rödel R, Sindorf N, Wisser D (2011) High resolution mapping of global reservoirs and dams and their downstream river impacts. Front Ecol Environ. doi:10.1890/100125

    Google Scholar 

  • Lettenmaier DP, Milly PCD (2009) Land waters and sea level. Nat Geosci 2:452–454. doi:10.1038/ngeo567

    Article  CAS  Google Scholar 

  • Loucks D (2007) Water resources and environmental management: issues, challenges, opportunities and options. Water Sci Technol Water Supply 7(2):1–10

    Article  Google Scholar 

  • Meehl GA, Arblaster JM, Tebaldi C (2007) Contributions of natural and anthropogenic forcing to changes in temperature extremes over the United States. Geophys Res Lett 34, L19709. doi:10.1029/2007GL030948

    Article  Google Scholar 

  • Meehl GA, Tebaldi C, Walton G, Easterling D, McDaniel L (2009) Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophys Res Lett 36:L23701. doi:10.1029/2009GL040736

    Article  Google Scholar 

  • Melillo JM, Reilly JM, Kicklighter DW, Gurgel AC, Cronin TW, Paltsev S, Felzer BS, Wang X, Sokolov AP, Schlosser CA (2009) Indirect emissions from biofuels: how important? Science 326:1397–1399. doi:10.1126/science.1180251

    Article  CAS  Google Scholar 

  • Meybeck M (2003) Global analysis of river systems: from earth system controls to Anthropocene syndromes. Philos Trans R Soc Lond Ser B. doi:10.1098/rstb.2003, pp. 1379

    Google Scholar 

  • Meybeck M, Vörösmarty CJ (2005) Fluvial filtering of land to ocean fluxes: from natural Holocene variations to Anthropocene. Compte Rend 337:107–123

    Article  CAS  Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Science 319:573–574

    Article  CAS  Google Scholar 

  • Milly PCD, Cazenave A, Famiglietti J, Gornitz V, Laval K, Lettenmaier DP, Sahagian D, Wahr J, Wilson CR (2010) In: Church JA, Woodworth PL, Aarup T, Wilson WS (eds) Terrestrial water-storage contributions to sea-level rise and variability. Wiley/Blackwell, Hoboken, 421 pp

    Google Scholar 

  • Mishra AK, Coulibaly P (2009) Developments in hydrometric network design: a review. Rev Geophys 47, RG2001. doi:10.1029/2007RG000243

    Article  Google Scholar 

  • Neumeyer J, Barthelmes F, Dierks O, Flechtner F, Harnisch M, Harnisch G, Hinderer J, Imanishi Y, Kroner C, Meurers B, Petrovic S, Reigber C, Schmidt R, Schwintzer P, Sun HP, Virtanen H (2006) Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models. J Geod 79(10–11):573–585

    Article  Google Scholar 

  • NRC (National Research Council) (1998) Global environmental change: research pathways for the next decade. National Academy Press, Washington, DC

    Google Scholar 

  • NRC (National Research Council) (1999a) Hydrologic science priorities for the U.S. Global change research program. National Academy Press, Washington, DC

    Google Scholar 

  • NRC (National Research Council) (1999b) New strategies for America’s watersheds. National Academy Press, Washington, DC

    Google Scholar 

  • NRC (National Research Council) (2000) From research to operations in weather satellites and numerical weather prediction: crossing the valley of death. National Academy Press, Washington, DC

    Google Scholar 

  • NRC (National Research Council) (2002a) Review of USGCRP plan for a New science initiative on the global water cycle. National Academy Press, Washington, DC

    Google Scholar 

  • NRC (National Research Council) (2002b) Report of a workshop on predictability & limits-to-prediction in hydrologic systems. National Academy Press, Washington, DC

    Google Scholar 

  • NRC (National Research Council) (2005) The science of instream flows: a review of the Texas instream flow program. National Academy Press, Washington, DC

    Google Scholar 

  • NRC (National Research Council) (2007) Earth science and applications from space: national imperatives for the next decade and beyond. National Academy Press, Washington, DC

    Google Scholar 

  • NRC (National Research Council) (2008a) Earth observations from space: the first 50 years of scientific achievements. National Academy Press, Washington, DC

    Google Scholar 

  • NRC (National Research Council) (2008b) Integrating multiscale observations of U.S. waters. National Academy Press, Washington, DC

    Google Scholar 

  • NRC (National Research Council) (2008c) Water implications of biofuels production in the United States. National Academy Press, Washington, DC

    Google Scholar 

  • NRC (National Research Council) (2009) Observing weather and climate from the ground up: a nationwide network of networks. National Academy Press, Washington, DC

    Google Scholar 

  • NRC (National Research Council) (2010a) Review of the WATERS network science plan. National Academy Press, Washington, DC

    Google Scholar 

  • NRC (National Research Council) (2010b) Expanding biofuel production: sustainability and the transition to advanced biofuels: summary of a workshop. National Academy Press, Washington, DC

    Google Scholar 

  • NRC (National Research Council) (2011a) Global change and extreme hydrology: testing conventional wisdom. Committee on hydrologic sciences. National Academy Press, Washington, DC

    Google Scholar 

  • NRC (National Research Council) (2011b) America’s climate choices. National Research Council, committee on America’s climate choices. National Academies Press, Washington, DC, 144 pp

    Google Scholar 

  • Okazawa Y, Yeh PJ-F, Kanae S, Oki T (2011) Development of a global flood risk index based on natural and socio-economic factors. Hydrol Sci J 56(5):789–804

    Article  Google Scholar 

  • Oki T (1999) The global water cycle. In: Browning K, Gurney R (eds) Global energy and water cycles. Cambridge University Press, Cambridge, pp 10–27

    Google Scholar 

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072

    Article  CAS  Google Scholar 

  • Oki T, Agata Y, Kanae S, Saruhashi T, Yang D, Musiake K (2001) Global assessment of current water resources using total runoff integrating pathways. Hydrol Sci J 46:983–996

    Article  Google Scholar 

  • Oki T, Entekhabi D, Harrold T (2004) The global water cycle. In: Sparks R, Hawkesworth C (eds) State of the planet: frontiers and challenges in geophysics, No. 150 in geophysical monograph series. AGU Publication, Washington, DC, p 414

    Google Scholar 

  • Oki T, Valeo C, Heal K (2006) Hydrology 2020: an integrating science to meet world water challenges. IAHS Publication, Wallingford, p 300

    Google Scholar 

  • Oki T, Blyth EM, Berbery EH, Alcaraz-Segura D (2012) Land cover and land use changes and their impacts on hydroclimate, ecosystems and society. Plenary paper for the WCRP open science conference, Denver, October 2012. DRAFT, 18 February 2012

    Google Scholar 

  • Palaniappan M, Gleick PH, Allen L, Cohen MJ, Christian-Smith J, Smith C (2010) Clearing the waters: a focus on water quality solutions. United Nations Environment Programme, Nairobi, 88p

    Google Scholar 

  • Parson M (2011) Expert report on data policy – open access. GRDI 2020, pp 8. see http://www.grdi2020.eu/StaticPage/About.aspx

  • Pokhrel Y, Hanasaki N, Koirala S, Cho J, Yeh PJ-F, Kim H, Kanae S, Oki T (2011) Incorporating anthropogenic water regulation modules into a land surface model. J Hydrometeorol 13:255–269

    Article  Google Scholar 

  • Pokhrel Y, Hanasaki N, Yeh PJ-F, Yamada TJ, Kanae S, Oki T (2012) Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat Geosci. doi:10.1038/ngeo1476

  • Ralph FM, Neiman PJ, Kiladis GN, Weickmann K, Reynolds DW (2011) A multiscale observational case study of a Pacific atmospheric river exhibiting tropical-extratropical connections and a mesoscale frontal wave. Mon Weather Rev 139(4):1169–1189

    Article  Google Scholar 

  • Ramillien G, Cazenave A, Brunau O (2004) Global time variations of hydrological signals from GRACE satellite gravimetry. Geophys J Int 158(3):813–826

    Article  Google Scholar 

  • Rodell M, Famiglietti JS, Chen J, Seneviratne S, Viterbo P, Holl SL, Wilson CR (2004a) Basin-scale estimates of evapotranspiration using GRACE and other observations. Geophys Res Lett 31(20):L20504. doi:10.1029/2004GL020873

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004b) The global land data assimilation system. Bull Am Meteorol Soc 85:381–394. doi:10.1175/BAMS-85-3-381

    Article  Google Scholar 

  • Rodell M, Famiglietti JS, Scanlon BR (2010) Realizing the potential for satellite gravimetry in hydrology: second GRACE hydrology workshop, August 4, 2009, Austin, TX. EOS Trans AGU 91(10):96

    Google Scholar 

  • Sahoo AK, Pan M, Troy TJ, Vinukollu RK, Sheffield J, Wood EF (2011) Reconciling the global terrestrial water budget using satellite remote sensing. Remote Sens Environ 115(8):1850–1865

    Article  Google Scholar 

  • Shapiro M, Shukla J, Brunet G, Nobre C, Béland M, Dole R, Trenberth K, Anthes R, Asrar G, Barrie L, Bougeault P, Brasseur G, Burridge D, Busalacchi A, Caughey J, Chen D, Church J, Enomoto T, Hoskins B, Hov O, Laing A, Le Treut H, Marotzke J, McBean G, Meehl G, Miller M, Mills B, Mitchell J, Moncrieff M, Nakazawa T, Olafsson H, Palmer T, Parsons D, Rogers D, Simmons A, Troccoli A, Toth Z, Uccellini L, Velden C, Wallace M (2010) An earth-system prediction initiative for the 21st century. Bull Am Meteorol Soc 91:1377–1388

    Article  Google Scholar 

  • Shen Y, Oki T, Utsumi N, Kanae S, Hanasaki N (2008) Projection of future world water resources under SRES scenarios: water withdrawal. Hydrol Sci J 53(1):11–33

    Article  Google Scholar 

  • Shiklomanov IA (ed) (1997) Assessment of water resources and water availability in the world. Background report for the comprehensive assessment of the freshwater resources of the world, WMO/SEI

    Google Scholar 

  • Shiklomanov AI, Lammers RB, Vörösmarty CJ (2002) Widespread decline in hydrological monitoring threatens Pan-Arctic research. AGU-Eos Trans 83(13):16–17

    Google Scholar 

  • Stakhiv EZ (2011) Pragmatic approaches for water management under climate change uncertainty. J Am Water Resour Assoc (JAWRA). doi:10.1111/j.1752-1688.2011.00589

    Google Scholar 

  • Stokstad E (1999) Scarcity of rain, stream gages threatens forecasts. Science 285(5431):1199–1200

    Article  CAS  Google Scholar 

  • Syed TH, Famiglietti JS, Rodell M, Chen J, Wilson CR (2008) Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res 44:W02433. doi:10.1029/2006WR005779

    Article  Google Scholar 

  • Syed TH, Famiglietti JS, Chambers D (2009) GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. J Hydrometeorol 10(1):22–40. doi:10.1175/2008JHM993.1

    Article  Google Scholar 

  • Syed TH, Famiglietti JS, Chambers D, Willis J, Hilburn K (2010) Satellite-based global ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge. Proc Natl Acad Sci USA 107(42):17916–17921. doi:10.1073/pnas.1003292107, published ahead of print October 4, 2010

    Article  CAS  Google Scholar 

  • Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380

    Article  CAS  Google Scholar 

  • Syvitski JPM, Kettner AJ, Hannon MT, Hutton EWH, Overeem I, Brakenridge GR, Day J, Vörösmarty C, Saito Y, Giosan L, Nicholls RJ (2009) Sinking deltas due to human activities. Nat Geosci 2:681–686

    Article  CAS  Google Scholar 

  • Trenberth KE (2011a) Attribution of climate variations and trends to human influences and natural variability. Wiley Interdiscip Rev Clim Change 2(6): 925–930

    Google Scholar 

  • Trenberth KE (2011b) Changes in precipitation with climate change. Clim Res 47:123–138. doi:10.3354/cr00953. [PDF]

    Article  Google Scholar 

  • Trenberth KE, Belward A, Brown O, Haberman E, Karl TR, Running S, Ryan B, Tanner M, Wielicki B (2011) Challenges of a sustained climate observing system. In: Plenary paper for the WCRP Open Science Conference, Denver, October 2011. DRAFT, 25 July 2011

    Google Scholar 

  • Trenberth KE, Fasullo J, Smith L (2005) Trends and variability in column-integrated atmospheric water vapor. Clim Dyn 24:741–758

    Article  Google Scholar 

  • Van Vliet M, Ludwig F, Kabat P, Yearsley JR, Lettenmaier DP (2012) Vulnerability of U.S. and European electricity supply to climate change. Nat Clim Change 2:676–681. doi:10.1038/nclimate1546

    Google Scholar 

  • Vörösmarty CJ, Leveque C, Revenga C (Convening Lead Authors) (2005) Chapter 7: Fresh water. In: Bos R, Caudill C, Chilton J, Douglas EM, Meybeck M, Prager D, Balvanera P, Barker S, Maas M, Nilsson C, Oki T, Reidy CA (eds) Millennium ecosystem assessment, vol 1 conditions and trends working group report. Island Press, pp 165–207. 966 pp

    Google Scholar 

  • Vörösmarty CJ, Meybeck M (2004) Responses of continental aquatic systems at the global scale: new paradigms, new methods. In: Kabat P, Claussen M, Dirmeyer PA, Gash JHC, Bravo L, Meybeck M, Pielke RA Sr, Vörösmarty CJ, Hutjes RWA, Lutkemeier S (eds) Vegetation, water, humans and the climate. Springer, Heidelberg, pp 375–413, 566 pp

    Chapter  Google Scholar 

  • Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288

    Article  Google Scholar 

  • Vörösmarty CJ, Day J, DeSherbinen A, Syvitski J (2009) Battling to save the world’s river deltas. Bull At Sci 65:31–43

    Article  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467:555–561

    Article  CAS  Google Scholar 

  • Weimerskirch H, Louzao M, de Grissac S, Delord K (2012) Changes in wind pattern alter albatross distribution and life-history traits. Science 335(6065):211–214. doi:10.1126/science.1210270

    Article  CAS  Google Scholar 

  • Wentz FJL, Ricciardulli KH, Mears C (2007) How much more rain will global warming bring? Science 317:233–235

    Article  CAS  Google Scholar 

  • Wisser D, Frolking S, Douglas EM, Fekete BM, Vörösmarty CJ, Schumann AH (2008) Global irrigation water demand: variability and uncertainties arising from agricultural and climate data sets. Geophys Res Lett 35:L24408. doi:10.1029/2008GL035296

    Article  Google Scholar 

  • WMO (World Meteorological Organization) (1995) WMO policy and practice for the exchange of meteorological and related data and products including guidelines on relationships in commercial meteorological activities. World Meteorological Organization Congress, Resolution 40 (Cg-XII, 1995), Geneva

    Google Scholar 

  • Wollheim WM, Vörösmarty CJ, Bouwman AF, Green P, Harrison JA, Meybeck M, Peterson BJ, Seitzinger SP, Syvitski JP (2008) A spatially distributed framework for aquatic modeling of the Earth system (FrAMES). Global Biogeochem Cycles 22:GB2026. doi:10.1029/2007GB002963

    Article  CAS  Google Scholar 

  • Wood EF, Roundy JK, Troy TJ, van Beek LPH, Bierkens MFP, Blyth E, de Roo A, Döll P, Ek M, Famiglietti J, Gochis D, van de Giesen N, Houser P, Jaffé PR, Kollet S, Lehner B, Lettenmaier DP, Peters-Lidard C, Sivapalan M, Sheffield J, Wade A, Whitehead P (2011) Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour Res 47, W05301. doi:10.1029/2010WR010090

    Article  Google Scholar 

  • World Climate Research Program (WCRP) (2010) GEWEX Plans for 2013 and Beyond. World Climate Research Programme. http://www.gewex.org/Imperatives.pdf

  • Yu L, Weller RA (2007) Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull Am Meteorol Soc 88:527–539

    Article  Google Scholar 

  • Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influence on twentieth-century precipitation trends. Nature 448:461–465. doi:10.1038/nature06025

    Article  CAS  Google Scholar 

  • Zhou YP, Xu KM, Sud YC, Betts AK (2011) Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data. J Geophys Res 116:D09101. doi:10.1029/2010JD015197

    Article  Google Scholar 

Download references

Acknowledgements

The authors express our gratitude for Ms. Misako Kachi for Box 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Gleick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gleick, P.H. et al. (2013). Improving Understanding of the Global Hydrologic Cycle. In: Asrar, G., Hurrell, J. (eds) Climate Science for Serving Society. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6692-1_6

Download citation

Publish with us

Policies and ethics