Skip to main content

Traditional and Modern Uses of Ceramics, Glass and Refractories

  • Chapter
The Science of Clays
  • 3086 Accesses

Abstract

The word “ceramic” comes from the Greek word “keramikos”, “of pottery” or “for pottery.” A ceramic is an inorganic, non-metallic often crystalline oxide, nitride or carbide material made by the action of heat and subsequent cooling. During the heating and cooling non-crystalline ceramics also can be formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Anderson, P.W. (1995). Through the Glass Lightly. Science, 267(5204): 1615. doi:10.1126/science.267.5204.1615-e.

    Article  Google Scholar 

  • Arora, A.K. and Tat, B.V.R. (1996). Dynamics of Charged Colloidal Suspensions Across the Freezing and Glass Transition. In: Ordering and Phase Transitions in Charged Colloids. VCH Publishers, New York.

    Google Scholar 

  • Doering, Robert and Yoshio Nishi (2007). Handbook of semiconductor manufacturing technology. CRC Press.

    Google Scholar 

  • Douglas, R.W. (1972). A history of glassmaking. G.T. Foulis & Co Ltd., Henley-on-Thames. ISBN 0-85429-117-2.

    Google Scholar 

  • Eric Le Bourhis (2007). Glass: Mechanics and Technology. Wiley-VCH.

    Google Scholar 

  • Greer, A. Lindsay and Mathur, N. (2005). Materials science: Changing face of the chameleon. Nature, 437(7063): 1246-1247.

    Article  Google Scholar 

  • Klement, W., Willens, R.H. and Duwez, P.O.L. (1960). Non-crystalline Structure in Solidified Gold-Silicon Alloys. Nature, 187(4740): 869. Bibcode 1960Natur.187..869K. doi:10.1038/187869b0

    Article  Google Scholar 

  • Leadbettera, A.J. and Wrigh, A.C. (1972). Diffraction studies of glass structure: II. The structure of vitreous germania. Journal of Non-crystalline Solids, 7: 37-52. doi:10.1016/0022-3093(72)90016-6.

    Article  Google Scholar 

  • Liebermann, H. and Graham, C. (1976). Production of Amorphous Alloy Ribbons and Effects of Apparatus Parameters on Ribbon Dimensions. IEEE Transactions on Magnetics, 12(6): 921.

    Article  Google Scholar 

  • Mendelev, M., Schmalian, J., Wang, C., Morris, J. and Ho, K. (2006). Interface Mobility and the Liquid-Glass Transition in a One-Component System. Physical Review, B74(10).

    Google Scholar 

  • Micoulaut, M. et al. (2006). Simulated structural and thermal properties of glassy and liquid germania. Physical Review, E73(3): 031504. doi:10.1103/ PhysRevE.73.031504. http://link.aps.org/doi/10.1103/PhysRevE.73.031504.

    Google Scholar 

  • Ojovan, M.I. (2004). Glass Formation in Amorphous SiO2 as a Percolation Phase Transition in a System of Network Defects. JETP Letters, 79(12): 632-634.

    Article  Google Scholar 

  • Ojovan, M.I. and Lee, W.E. (2006). Topologically disordered systems at the glass transition. J. Phys.: Condensed Matter, 18(50): 11507-11520. Bibcode 2006JPCM…1811507O. doi:10.1088/0953-8984/18/50/007.

    Article  Google Scholar 

  • Pfaender, Heinz G. (1996). Schott guide to glass. Springer. ISBN 978-0-412-62060-7. http://books.google.com/books?id=v5q4Hje3iFgC&pg=PA135. Retrieved 8 February 2011.

  • Ponnambalam, V., Joseph Poon, S. and Shiflet, Gary J. (2004). Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. Journal of Materials Research, 19(5): 1320. Bibcode 2004JMatR..19.1320 P. doi:10.1557/ JMR.2004.0176.

    Article  Google Scholar 

  • Pusey, P.N., Van Megen, W. (1987). Observation of a glass transition in suspensions of spherical colloidal particles. Physical Review Letters, 59(18): 2083-2086. Bibcode 1987PhRvL.59.2083P. doi:10.1103/PhysRevLett.59.2083. PMID 10035413.

    Article  Google Scholar 

  • Salmon, P.S. et al. (2006). Glass Fragility and Atomic Ordering on the Intermediate and Extended Range. Physical Review Letters, 96(23): 235502. Bibcode 1976ITM…12.921L. doi:10.1109/TMAG.1976.1059201.

    Article  Google Scholar 

  • Shackelford, James F. and Doremus, Robert H. (2008). Ceramic and Glass Materials: Structure, Properties and Processing. Springer. ISBN 0-387-73361-2.

    Book  Google Scholar 

  • Van Megen, W. and Underwood, S. (1993). Dynamic-light-scattering study of glasses of hard colloidal spheres. Physical Review, E47: 248. Bibcode 1993PhRvE.47.248V. doi:10.1103/PhysRevE.47.248.

    Google Scholar 

  • Werner, Vogel (1994). Glass Chemistry (2 ed.). Springer-Verlag, Berlin and Heidelberg GmbH & Co. K. ISBN 3-540-57572-3.

    Google Scholar 

  • Zallen, R. (1983). The Physics of Amorphous Solids. John Wiley, New York. ISBN 0-471-01968-2Löwen, H.

    Google Scholar 

  • Zanotto, Edgar Dutra (1998). Do Cathedral Glasses Flow? American Journal of Physics, 66(5): 392-396. Bibcode 1998AmJPh.66.392Z. doi:10.1119/1.19026.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Capital Publishing Company

About this chapter

Cite this chapter

Mukherjee, S. (2013). Traditional and Modern Uses of Ceramics, Glass and Refractories. In: The Science of Clays. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6683-9_8

Download citation

Publish with us

Policies and ethics