Advertisement

Practical Applications

  • Meinhard KunaEmail author
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 201)

Abstract

Bainitic cast iron with nodular graphite (Austempered Ductile Iron ADI) shows a good ductility, a superior wear resistance and a high fatigue strength, which makes it an interesting alternative to steel for producing railway wheels. However, ADI possesses a lower fracture toughness and is, due to the casting process, more prone to defects. A railway wheel is exposed to high static and cyclic loading.

Keywords

Stress Intensity Factor Weld Metal Fatigue Crack Growth Crack Front Heat Affected Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

  1. 1.
    Kuna M, Springmann M, Mädler K, Hübner P, Pusch G (2002) Anwendung bruchmechanischer Bewertungskonzepte bei der Entwicklung von Eisenbahnrädern aus bainitischem Gusseisen. Konstruieren & Gießen pp 27–32Google Scholar
  2. 2.
    Kuna M, Springmann M, Mädler K, Hübner P, Pusch G (2005) Fracture mechanics based design of a railway wheel made of austempered ductile iron. Eng Fract Mech 72:241–253Google Scholar
  3. 3.
    Murakami Y (1987) Stress intensity factors handbook. vol. 1–5. Pergamon Press, OxfordGoogle Scholar
  4. 4.
    IAEA (2002) Advisory material for the IAEA regulations for the safe transport of radioactive material. International Atomic Energy Agency Safety Standards Series, TS-G-1, Appendix VIGoogle Scholar
  5. 5.
    CRIEPI (1990) Integrity of cast-iron cask against free drop test, part iii: Verification of brittle failure, design criterium. Technical Report, Central Research Institute for Electric Power JapanGoogle Scholar
  6. 6.
    Abaqus (1998) ABAQUS Theory und User Manual. Pawtucket, USAGoogle Scholar
  7. 7.
    Enderlein M, Klein K, Kuna M, Ricoeur A (2003) Numerical fracture analysis for the structural design of castor casks. In: 17th International conference on structural mechanics in reactor technology (SMIRT 17). Prague, Czech RepublicGoogle Scholar
  8. 8.
    Kuna M, Wulf H, Rusakov A, Pusch G, Hübner P (2002) Ein computergestütztes bruchmechanisches bewertungssystem für hochdruck-ferngasleitungen. In: MPA-Seminar, vol. 28. Stuttgart, pp 4/1–4/20Google Scholar
  9. 9.
    Kuna M, Wulf H, Rusakov A, Pusch G, Hübner P (2003) Entwicklung und verifikation eines bruchmechanischen bewertungssystems für hochdruck-ferngasleitungen. In: 35.Tagung Arbeitskeis Bruchvorgänge, DVM, Freiburg, pp 153–162Google Scholar
  10. 10.
    ÖSTV (1992) Empfehlungen zur bruchmechanischen bewertung von fehlern in konstruktionen aus metallischen werkstoffen. Technical Report, Österreichischer Stahlbauverband, AG BruchmechanikGoogle Scholar
  11. 11.
    Milne I, Ainsworth RA, Dowling AR, Stewart AT (1991) Assessments of the integrity of structures containing defects. British Energy-Report, R6-Revision 3Google Scholar
  12. 12.
    Zerbst U, Wiesner C, Kocak M, Hodulak L (1999) Sintap: Entwurf einer vereinheitlichten europäischen fehlerbewertungsprozedur - eine einführung. Technical Report, GKSS-Forschungszentrum, GeesthachtGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute für Mechanik und FluiddynamikTU Bergakademie FreibergFreibergGermany

Personalised recommendations