Skip to main content

Numerical Simulation of Crack Propagation

  • Chapter
  • First Online:
Finite Elements in Fracture Mechanics

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 201))

  • 5793 Accesses

Abstract

Prediction of the crack propagation process is of great importance for many fracture mechanical issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dhondt G (1998) Cutting of a 3-D finite element mesh for automatic mode I crack propagation calculations. Int J Numer Meth Eng 42:749–772

    Article  MATH  Google Scholar 

  2. Mishnaevsky L, Weber U, Schmauder S (2004) Numerical analysis of the effect of microstructures of particle-reinforced metallic materials on the crack growth and fracture resistance. Int J Fract 125:33–50

    Article  MATH  Google Scholar 

  3. Bazant ZP, Oh BH (1983) Crack band theory for fracture and concrete. Mater Struct 16:155–177

    Google Scholar 

  4. deBorst R (2002) Fracture in quasi-brittle materials: a review of continuum damage-based approaches. Eng Fract Mech 69:95–112

    Google Scholar 

  5. Hillerborg A, Rots JG (1989) Crack concepts and numerical modelling. In: Elfgren L (ed) Fracture mechanics of concrete structures. Chapman & Hall, London, New York, pp 128–146

    Google Scholar 

  6. Nishioka T, Atluri SN (1980) Numerical modeling of dynamic crack propagation in finite bodies by moving singular elements. J Appl Mech 47:570–582

    Article  MathSciNet  MATH  Google Scholar 

  7. Murthy KSRK, Mukhopadhyay M (2000) Adaptive finite element analysis of mixed-mode crack problems with automatic mesh generator. Int J Numer Meth Eng 49:1087–1100

    Article  MATH  Google Scholar 

  8. Nishioka T, Furutsuka J, Tchouikov S, Fujimoto T (2002) Generation-phase simulation of dynamic crack bifurcation phenomenon using moving finite element method based on Delaunay automatic triangulation. Comput Model Eng Simul 3:129–145

    Google Scholar 

  9. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, vol 1. Elsevier, Amsterdam

    MATH  Google Scholar 

  10. Schöllmann M, Fulland M, Richard HA (2003) Development of a new software for adaptive crack growth simulations in 3D structures. Eng Fract Mech 70:249–268

    Google Scholar 

  11. Wriggers P (2001) Nichtlineare Finite-Elemente-Methoden. Springer, Berlin

    Book  Google Scholar 

  12. Meyer A, Rabold F, Scherzer M (2006) Efficient finite element simulation of crack propagation using adaptive iterative solvers. Commun Numer Methods Eng 22:93–108

    Article  MathSciNet  MATH  Google Scholar 

  13. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129

    Article  MathSciNet  Google Scholar 

  14. Dugdale D (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  15. Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54:525–531

    Article  MATH  Google Scholar 

  16. Brocks W, Cornec A (2003) Cohesive models—special issue. Eng Fract Mech 70(14):1741–1986

    Article  Google Scholar 

  17. Brocks W, Cornec A, Scheider I (2003) Computational aspects of nonlinear fracture mechanics. In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity—numerical and computational methods, vol 3. Elsevier, Oxford, pp 127–209

    Chapter  Google Scholar 

  18. Rose JH, Ferrante J, Smith JR (1981) Universal binding energy curves for metals and bimetallic interfaces. Phys Rev Lett 47:675–678

    Article  Google Scholar 

  19. Needleman A (1990) An analysis of tensile decohesion along an imperfect interface. Int J Fract 42:21–40

    Article  Google Scholar 

  20. Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids 40:1377–1397

    Article  MATH  Google Scholar 

  21. Scheider, I (2001) Bruchmechanische Bewertung von Laserschweißverbindungen durch numerische Rissfortschrittsimulation mit dem Kohäsivzonenmodell. Ph.D. thesis, Technische Universität Hamburg

    Google Scholar 

  22. Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–782

    Article  Google Scholar 

  23. Bazant ZP (1993) Current status and advances in the theory of creep and interaction with fracture. In: Bazant ZP, Ignacio CC (eds) Proceedings of the 5th international RILEM symposium on creep and shrinkage of concrete, Chapman & Hall, Barcelona, pp 291–307

    Google Scholar 

  24. Xu X, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    Article  MATH  Google Scholar 

  25. Ortis M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44:1267–1282

    Article  Google Scholar 

  26. Schwalbe KH, Scheider I, Cornec A (2013) Guidelines for applying cohesive models to the damage behaviour of engineering materials. Springer, Heidelberg

    Google Scholar 

  27. Rousselier G (1987) Ductile fracture models and their potential in local approach of fracture. Nucl Eng Des 105:97–111

    Article  Google Scholar 

  28. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile materials. J Eng Mater Technol 99:2–15

    Article  Google Scholar 

  29. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32(1):157–169

    Article  Google Scholar 

  30. Richard HA, Sander M, Kullmer G, Fulland M (2004) Finite-Elemente-Simulation im Vergleich zur Realität—Spannungsanalytische und bruchmechanische Untersuchungen zum ICE-Radreifenbruch. Materialprüfung 46:441–448

    Google Scholar 

  31. ESIS P2 (1992) Procedure for determining the fracture behaviour of materials. Technical report, European Structural Integrity Society

    Google Scholar 

  32. Abendroth M (2005) Identifikation elastoplastischer und schädigungsmechanischer Materialparameter aus dem Small Punch Test. Ph.D. thesis, TU Bergakademie Freiberg

    Google Scholar 

  33. Abendroth M, Kuna M (2006) Identification of ductile damage and fracture parameters from the small punch test using neural networks. Eng Fract Mech 73:710–725

    Article  Google Scholar 

  34. Klingbeil D, Brocks W, Fricke S, Arndt S, Reusch F, Kiyak Y (1998) Verifikation von Schädigungsmodellen zur Vorhersage von Rißwiderstandskurven für verschiedene Probengeometrien und Materialien im Rißinitiierungsbereich und bei großem Rißwachstum. Technical report, BAM-V.31 98/2, Bundesanstalt für Materialforschung und -prüfung

    Google Scholar 

  35. ASTM-E 1820 (2007) Standard test method for measurement of fracture toughness. Technical report, American Society for Testing and Materials, West Conshohocken

    Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meinhard Kuna .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kuna, M. (2013). Numerical Simulation of Crack Propagation. In: Finite Elements in Fracture Mechanics. Solid Mechanics and Its Applications, vol 201. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6680-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6680-8_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6679-2

  • Online ISBN: 978-94-007-6680-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics