FE-Techniques for Crack Analysis in Linear-Elastic Structures

  • Meinhard KunaEmail author
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 201)


The goal of a FEM analysis is the calculation of fracture-mechanical loading parameters for a crack in a structure (test piece, component, material’s microstructure) in the case of linear-elastic (isotropic or anisotropic) material behavior. In Sect. 3.2 the relevant loading parameters of LEFM were introduced: the stress intensity factors \(K_\mathrm{{I}}\), \(K_\mathrm{{II}}\), \(K_\mathrm{{III}}\) and the energy release rate \(G \equiv J\). Their values depend on the geometry of the structure, its load, the length and shape of the crack and on the material’s elastic properties.

Although FEM can be directly applied to solve a BVP, its use in crack problems involves a fundamental difficulty. This difficulty lies in the exact determination of the singularity at the crack tip with the help of a numerical approximation method such as FEM. Conventional finite element types only have regular polynomial functions for \(u_i\), \(\varepsilon _{ij}\) and \(\sigma _{ij}\). Therefore, they reproduce the crack singularity poorly. For this reason, special element functions, numerical algorithms or evaluation techniques are needed to obtain loading parameters from a FEM solution efficiently and accurately. In the following chapter, we will introduce the methods that have been developed for this, concentrating mainly on stationary cracks. The particularities of FEM techniques and meshes in analyzing unsteady cracks will be dealt with in Chap. 8.


Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.


  1. 1.
    Byskov E (1970) The calculation of stress intensity factors using the finite element method with cracked elements. Int J Fract 6:159–167CrossRefGoogle Scholar
  2. 2.
    Wilson WK (1973) Finite element methods for elastic bodies containing cracks. In: Sih GC (ed) Methods of analysis and solutions of crack problems. Mechanics of fracture, vol 1. Noordhoff, Leyden, pp 484–515Google Scholar
  3. 3.
    Akin JE (1976) The generation of elements with singularities. Int J Numer Methods Eng 10:1249–1259MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Benzley SF (1974) Representations of singularities with isoparametric finite elements. Int J Numer Methods Eng 8:537–545zbMATHCrossRefGoogle Scholar
  5. 5.
    Blackburn WS (1973) Calculation of stress intensity factors at crack tips using special finite elements. In: Whiteman JR (ed) The mathematics of finite elements and applications. Academic Press, London, pp 327–336Google Scholar
  6. 6.
    Tracey DM (1971) Finite elements for determination of crack tip elastic stress intensity factors. Eng Fract Mech 3:255–256CrossRefGoogle Scholar
  7. 7.
    Blackburn WS, Hellen TK (1977) Calculation of stress intensity factors in three-dimensions by finite element methods. Int J Numer Methods Eng 11:211–229zbMATHCrossRefGoogle Scholar
  8. 8.
    Tracey DM (1974) Finite elements for three-dimensional elastic crack analysis. J Nucl Eng Des 26:282–290CrossRefGoogle Scholar
  9. 9.
    Henshell RD, Shaw KG (1975) Crack tip finite elements are unnecessary. Int J Numer Methods Eng 9:495–507zbMATHCrossRefGoogle Scholar
  10. 10.
    Barsoum RS (1976) On the use of isoparametric finite elements in linear fracture mechanics. Int J Numer Methods Eng 10:25–37zbMATHCrossRefGoogle Scholar
  11. 11.
    Banks-Sills L, Bortman Y (1984) Reappraisal of the quarter-point quadrilaterial element in linear fracture mechanics. Int J Fract 25:169–180CrossRefGoogle Scholar
  12. 12.
    Freese CE, Tracey DM (1976) The natural triangle versus collapsed quadrilateral for elastic crack analysis. Int J Fract 12:767–770Google Scholar
  13. 13.
    Barsoum RS (1977) Triangular quarter point elements as elastic and perfectly-plastic crack tip elements. Int J Numer Methods Eng 11:85–98zbMATHCrossRefGoogle Scholar
  14. 14.
    Hussain MA, Coffin LF, Zaleski KA (1981) Three dimensional singular elements. Comput Struct 13:595–599zbMATHCrossRefGoogle Scholar
  15. 15.
    Manu C (1983) Quarter-point elements for curved crack fronts. Comput Struct 17:227–231zbMATHCrossRefGoogle Scholar
  16. 16.
    Banks-Sills L, Sherman D (1989) On quarter-point three dimensional finite elements in elastic fracture mechanics. Int J Fract 41:177–196CrossRefGoogle Scholar
  17. 17.
    Banks-Sills L, Sherman D (1992) On the computation of stress intensity factors for three-dimensional geometries by means of the stiffness derivative and J-integral methods. Int J Fract 53:1–20Google Scholar
  18. 18.
    Hartranft RJ, Sih GC (1968) Effect of plate thickness on the bending stress distribution around through cracks. J Math Phys 47:276–291zbMATHGoogle Scholar
  19. 19.
    Zienkiewicz OC, Taylor RL (1991) The finite element method, vol 2, 4th edn. McGraw Hill, LondonGoogle Scholar
  20. 20.
    Barsoum RS (1976) A degenerate solid element for linear fracture analysis of plate bending and general shells. Int J Numer Methods Eng 10:551–564zbMATHCrossRefGoogle Scholar
  21. 21.
    Barsoum RS, Loomis RW, Stewart BD (1979) Analysis of through cracks in cylindrical shells by quarter-point elements. Int J Fract Mech 15:259–280Google Scholar
  22. 22.
    Alwar RS, Nambissan KNR (1983) Three-dimensional finite element analysis of cracked thick plates in bending. Int J Numer Methods Eng 19:293–303zbMATHCrossRefGoogle Scholar
  23. 23.
    Zucchini A, Hui CY, Zehnder AT (2000) Crack tip stress fields for thin, cracked plates in bending, shear and twisting: a comparison of plate theory and three-dimensional elasticity theory solutions. Int J Fract 104:387–407CrossRefGoogle Scholar
  24. 24.
    Ingraffea AR, Manu C (1980) Stress-intensity factor computations in three dimensions. Int J Numer Methods Eng 15:1427–1445MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Pian THH, Tong P, Luk CH (1971) Elastic crack analysis by a finite element hybrid method. In: 3. Conference on matrix methods in structural mechanics, Wright Patterson Air Force Base, Ohio, pp 661–682Google Scholar
  26. 26.
    Schnack E, Wolf M (1978) Application of displacement and hybrid stress methods to plane notch and crack problems. Int J Numer Methods Eng 12:963–975zbMATHCrossRefGoogle Scholar
  27. 27.
    Atluri SN, Kobayashi AS, Nakagaki M (1975) An assumed displacement hybrid finite element model for linear fracture mechanics. Int J Fract 11:257–271CrossRefGoogle Scholar
  28. 28.
    Tong P, Pian THH, Lasry H (1973) A hybrid element approach to crack problems in plane elasticity. Int J Numer Methods Eng 7:297–308zbMATHCrossRefGoogle Scholar
  29. 29.
    Kuna M, Khanh DQ (1978) Ein spezielles Hybridelement fnr die Spannungsanalyse ebener Körper mit Rissen. Berichte VIII. Int Kongre Mathematik in den Ingenieurwissenschaften, IKM Weimar 2, 71–76Google Scholar
  30. 30.
    Tong P (1977) A hybrid element for rectilinear anisotropic material. Int J Numer Methods Eng 11:377–383zbMATHCrossRefGoogle Scholar
  31. 31.
    Lin KY, Mar JW (1976) Finite element analysis of stress intensity factors for a crack at a bi-material interface. Int J Fract 12:521–531Google Scholar
  32. 32.
    Drumm R (1982) Zur effektiven FEM-Analyse ebener Spannungskonzentrationsprobleme. PhD thesis, Universität Karlsruhe, Karlsruhe, DeutschlandGoogle Scholar
  33. 33.
    Pian THH, Moriya K (1978) Three-dimensional fracture analysis by assumed stress hybrid elements. In: Luxmoore AR (ed) Numerical methods in fracture mechanics. Pineridge Press, Swansea, pp 363–373Google Scholar
  34. 34.
    Kuna M (1982) Konstruktion und Anwendung hybrider Rissspitzenelemente für dreidimensionale Aufgaben. Tech Mech 3:37–43Google Scholar
  35. 35.
    Atluri SN, Kartiresan K (1979) 3D analysis of surface flaws in thick-walled reactor pressure vessels using displacement-hybrid finite element method. Nucl Eng Des 51:163–176CrossRefGoogle Scholar
  36. 36.
    Kuna M, Zwicke M (1989) A mixed hybrid finite element for three dimensional elastic crack analysis. Int J Fract 45:65–79CrossRefGoogle Scholar
  37. 37.
    Rhee HC, Atluri SN (1982) Hybrid stress finite element analysis of bending of a plate with a through flaw. Int J Numer Methods Eng 18:259–271zbMATHCrossRefGoogle Scholar
  38. 38.
    Moriya K (1982) Finite element analysis of cracked plate subjected to out-of-plane bending, twisting and shear. Bull Jpn Soc Mech Eng 25:1202–1210CrossRefGoogle Scholar
  39. 39.
    Atluri SN (1978) Hybrid finite element models for linear and nonlinear fracture mechanics. In: Luxmoore AR (ed) Numerical methods in fracture mechanics. Pineridge Press, Swansea, pp 363–373Google Scholar
  40. 40.
    Tong P, Atluri SN (1977) On hybrid finite element technique for crack analysis. In: Sih GC (ed) Fracture mechanics and technology. Nordhoff, New York, pp 1445–1465Google Scholar
  41. 41.
    Kuna M (1990) Entwicklung und Anwendung effizienter numerischer Verfahren zur bruchmechanischen Beanspruchungsanalyse am Beispiel hybrider finiter Elemente. Habilitation, Martin Luther Universität HalleGoogle Scholar
  42. 42.
    Tada H, Paris P, Irwin G (1985) The stress analysis of cracks handbook, 2nd edn. Paris Production Inc., St. LouisGoogle Scholar
  43. 43.
    Fett T (1998) A compendium of T-stress solutions. Technical report FZKA 6057, Forschungszentrum Karlsruhe, Technik und UmweltGoogle Scholar
  44. 44.
    Eisentraut UM, Kuna M (1986) Ein FEM-Programm zur Lösung ebener, axialsymmetrischer und räumlicher Riss-. Festigkeits- und Wärmeleitprobleme. Tech Mech 7:51–58Google Scholar
  45. 45.
    Yamamoto Y, Sumi Y (1978) Stress intensity factors of three-dimensional cracks. Int J Fract 14:17–38CrossRefGoogle Scholar
  46. 46.
    Kuna M (1984) Behandlung räumlicher Rissprobleme mit der Methode der finiten Elemente. Tech Mech 5:23–26Google Scholar
  47. 47.
    Parks DM (1974) Stiffness derivative finite element technique for determination of crack-tip stress intensity factors. Int J Fract 10:487–502CrossRefGoogle Scholar
  48. 48.
    Hellen TK (1975) On the method of virtual crack extensions. Int J Numer Methods Eng 9:187–207zbMATHCrossRefGoogle Scholar
  49. 49.
    deLorenzi HG (1982) On the energy release rate and the J-integral for 3-D crack configurations. Int J Fract 19:183–193Google Scholar
  50. 50.
    Lin SC, Abel JF (1988) Variational approach for a new direct-integration form of the virtual crack extension method. Int J Fract 38:217–235Google Scholar
  51. 51.
    Wawrzynek PA, Ingraffea AR (1987) Interactive finite-element analysis of fracture processes: an integrated approach. Theor Appl Fract Mech 8:137–150CrossRefGoogle Scholar
  52. 52.
    deLorenzi HG (1985) Energy release rate calculations by the finite element method. Eng Fract Mech 21:129–143CrossRefGoogle Scholar
  53. 53.
    Bass BR, Bryson JW (1985) Energy release rate techniques for combined thermo-mechanical loading. Int J Fract 22:R3–R7CrossRefGoogle Scholar
  54. 54.
    Rybicki EF, Kanninen MF (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9:931–938CrossRefGoogle Scholar
  55. 55.
    Buchholz FG (1984) Improved formulae for the finite element calculation of the strain energy release rate by modified crack closure integral method. In: Robinson Dorset J (ed) Accuracy, reliability and Training in FEM technology. Robinson and Associates, Dorset, pp 650–659.Google Scholar
  56. 56.
    Raju IS (1987) Calculation of strain-energy release rates with higher order and singular finite elements. Eng Fract Mech 28:251–274CrossRefGoogle Scholar
  57. 57.
    Ramamurthy TS, Krishnamurthy T, Narayana KB, Vijayakumar K, Dattaguru B (1986) Modified crack closure integral method with quarter point elements. Mech Res Commun 13:179–186CrossRefGoogle Scholar
  58. 58.
    Singh R, Carter B, Wawrzynek P, Ingraffea A (1998) Universal crack closure integral for SIF estimation. Eng Fract Mech 60:133–146CrossRefGoogle Scholar
  59. 59.
    Shivakumar KN, Tan PW, Newman JC (1988) A virtual crack-closure technique for calculating stress intensity factors for cracked three-dimensional bodies. Int J Fract 36:R43–50Google Scholar
  60. 60.
    Smith SA, Raju IS (1999) Evaluation of stress intensity factors using general finite element models. In: Panontin TL, Sheppard SL (eds) Fatigue and fracture mechanics. ASTM STP 1332. American Society for Testing and Materials, Philadelphia, pp 176–200Google Scholar
  61. 61.
    Abdel Wahab MM, De Roeck G (1996) A finite element solution for elliptical cracks using the ICCI method. Eng Fract Mech 53:519–526Google Scholar
  62. 62.
    Kemmer G (2000) Berechnung von elektromechanischen Intensitätsparametern bei Rissen in Piezokeramiken. Dissertation, Reihe 18, Nr. 261, TU Dresden. VDI-Verlag DüsseldorfGoogle Scholar
  63. 63.
    De Roeck G, Abdel Wahab MM (1995) Strain energy release rate formulae for 3D finite element. Eng Fract Mech 50:569–580Google Scholar
  64. 64.
    Murakami Y (1987) Stress intensity factors handbook, vol 1–5. Pergamon Press, OxfordGoogle Scholar
  65. 65.
    Andrasic CP, Parker AP (1984) Dimensionless stress intensity factors for cracked thick cylinders under polynomial crack face loadings. Eng Fract Mech 19:187–193CrossRefGoogle Scholar
  66. 66.
    Parks DM, Kamenetzky EM (1979) Weight functions from virtual crack extensions. Int J Numer Methods Eng 14:1693–1706zbMATHCrossRefGoogle Scholar
  67. 67.
    Paris PC, McMeeking RM, Tada H (1976) The weight function method for determining stress intensity factors. In: Cracks and fracture, STP 601. American Society for Testing of Materials, Philadelphia, pp 471–489Google Scholar
  68. 68.
    Sham TL (1987) A unified finite element method for determining weight functions in two and three dimensions. Int J Solids Struct 23:1357–1372zbMATHCrossRefGoogle Scholar
  69. 69.
    Sham TL, Zhou Y (1989) Computation of three-dimensional weight functions for circular and elliptical cracks. Int J Fract 41:51–75MathSciNetCrossRefGoogle Scholar
  70. 70.
    Busch M, Maschke H, Kuna M (1990) A novel BEM-approach to weight functions based on Bueckner’s fundamental field. In: Luxmoore A, Owen D (eds) Proceedings of 5th international conference on numerical methods in fracture mechanics, Freiburg, 23–27 April 1990. Pineridge Press, Swansea, pp 5–16Google Scholar
  71. 71.
    Kuna M, Rajiyah H, Atluri SN (1990) A new approach to determine weight functions from Bueckners’s fundamental field by the superposition technique. Int J Fract 44(4):R57–R63Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute für Mechanik und FluiddynamikTU Bergakademie FreibergFreibergGermany

Personalised recommendations