Skip to main content

Part of the book series: Methodos Series ((METH,volume 11))

Abstract

Network analysis naturally relies on graph theory and, more particularly, on the use of node and edge metrics to identify the salient properties in graphs. When building visual maps of networks, these metrics are turned into useful visual cues or are used interactively to filter out parts of a graph while querying it, for instance. Over the years, analysts from different application domains have designed metrics to serve specific needs. Network science is an inherently cross-disciplinary field, which leads to the publication of metrics with similar goals; different names and descriptions of their analytics often mask the similarity between two metrics that originated in different fields. Here, we study a set of graph metrics and compare their relative values and behaviors in an effort to survey their potential contributions to the spatial analysis of networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, this requires that the graph does not have multiple edges, which is the case we consider here. Otherwise, paths should specify which edges are followed along the path.

  2. 2.

    This being said, a random Erdős-Rényi graph might not be necessarily connected. For more details, see Bollobás (1985).

References

  • Amiel, M., Mélançon, G., & Rozenblat, C. (2005). Réseaux multi-niveaux: l’exemple des échanges aériens mondiaux de passagers. Mappemonde, 79, 12 p. Retrieved July 21, 2009, from http://mappemonde.mgm.fr/num7/articles/art05302.html

  • Anthonisse, J. M. (1971). The rush in a directed graph (Technical Rep. No. BN 9/71). Amsterdam: Stichting Mathematisch Centrum.

    Google Scholar 

  • Auber, D., Chiricota, Y., Jourdan, F., & Melançon, G. (2003). Multiscale navigation of small world networks. In IEEE symposium on information visualisation (pp. 75–81). Seattle, GA: IEEE Computer Science Press.

    Google Scholar 

  • Beauchamp, M. A. (1965). An improved index of centrality. Behavior Science, 10(2), 161–163.

    Article  Google Scholar 

  • Bollobás, B. (1985). Random graphs. London: Academic Press.

    Google Scholar 

  • Brandes, U., Gaertler, M., & Wagner, D. (2007). Engineering graph clustering: Models and experimental evaluation. Journal of Experimental Algorithmics,12, 1.1.

    Google Scholar 

  • Burt, R. S. (2005). Brokerage and closure. Oxford: Oxford University Press.

    Google Scholar 

  • Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large networks. Physics Reviews E,70, 066111.

    Google Scholar 

  • Dangalchev, C. (2006). Residual closeness in networks. Physica A,365, 556–564.

    Google Scholar 

  • Erdös, P., & Rényi, A. (1959). On random graphs. I. Publicationes Mathematicae Debrecen,6, 290–297.

    Google Scholar 

  • Erdös, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences,5, 17–61.

    Google Scholar 

  • Freeman, L. C. (1979). Centrality in social networks: Conceptual clarification. Social Networks,1, 215–239.

    Google Scholar 

  • Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy Science USA,99, 7821–7826.

    Google Scholar 

  • Granovetter, M. S. (1973). The strength of weak ties. The American Journal of Sociology,78(6), 1360–1380.

    Google Scholar 

  • Guimerà, R., Mossa, S., Turtschi, A., & Amaral, L. A. N. (2005). The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proceedings of the National Academy of Sciences of the United States of America,102(22), 7794–7799.

    Google Scholar 

  • Hage, P., & Harary, F. (1995). Eccentricity and centrality in networks. Social Networks,17, 57–63.

    Google Scholar 

  • Harary, F. (1959). Status and contrastatus. Sociometry,22, 23–43.

    Google Scholar 

  • Jaccard, P. (1901). Distribution de la flore alpine dans la bassin de dranses et dans quelques regions voisines. Bulletin del la Société Vaudoise des Sciences Naturelles,37, 241–272.

    Google Scholar 

  • Milgram, S. (1967). The small world problem. Psychology Today,1, 61.

    Google Scholar 

  • Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Science USA,98, 404–409.

    Google Scholar 

  • Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review,45, 167–256.

    Google Scholar 

  • Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Acadademy of Sciences USA,103, 8577–8582.

    Google Scholar 

  • Sabidussi, G. (1966). The centrality index of a graph. Psychometrika,31(4), 581–603.

    Google Scholar 

  • Sallaberry, A., & Melançon, G. (2008). Edge metrics for visual graph analytics: A comparative study. In Information visualization conference (pp. 610–615). London: IEEE Computer Society.

    Google Scholar 

  • Schaeffer, S. E. (2007). Graph clustering. Computer Science Review,1, 27–64.

    Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal,27, 379–423, 623–656.

    Google Scholar 

  • Shimbel, A. (1953). Structural parameters of communication networks. Bulletin of Mathematical Biology,15(4), 501–507.

    Google Scholar 

  • Valente, T. W., & Foreman, R. K. (1998). Integration and radiality: Measuring the extent of an individual’s connectedness and reachability in a network. Social Networks,20(1), 89–105.

    Google Scholar 

  • Watts, D., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature,393, 440–442.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Melançon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Melançon, G., Rozenblat, C. (2013). Structural Analysis of Networks. In: Rozenblat, C., Melançon, G. (eds) Methods for Multilevel Analysis and Visualisation of Geographical Networks. Methodos Series, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6677-8_5

Download citation

Publish with us

Policies and ethics