Skip to main content

Biomass for Energy: Energetic and Environmental Challenges of Biofuels

  • Chapter
  • First Online:
Global Change, Energy Issues and Regulation Policies

Part of the book series: Integrated Science & Technology Program ((ISTP,volume 2))

  • 1394 Accesses

Abstract

Transportation is 94 % dependent on oil, represents around 20 % of global consumption of energy, and is responsible for 23 % of total emissions from fossil fuels. For several years, progress has been made to enhance the energy efficiency of the systems, but increasing the part of biofuel still seems irremediable both for environmental, economic, and energy independence reasons. Fuel production from biomass is clearly considered as an important substitute for liquid fossil fuels such as bioethanol for motor gasoline, biodiesel for diesel, jet fuel for biokerosene, and for gaseous fuels (hydrogen, natural gas for vehicles, biomethane, etc.). This chapter presents the main pathways for the production of biofuels, and classifies their degree of maturity:

  • The first-generation processes that value the reserves of a plant (starch, sugar, oil) are now mature and industrially deployed.

  • The second generation processes extend their resource to the whole plant tissues (agricultural, forest) or to organic waste, and are almost under scientific control but they still need more economic and energetic assessment before being commercially deployed.

  • The last innovative pathway, the advanced or third biofuel generation, shows significant potential by using bioalgae or microorganisms capable of producing much more biomass oil convertible into biodiesel and gaseous fuels such as methane or hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Agro-fuel: Biomass from agricultural crops.

  2. 2.

    Azeotrope: A liquid mixture for which boiling occurs at a fixed temperature and composition.

  3. 3.

    The Net Calorific Value (NCV) of a substance, is the amount of heat released during the combustion of 1 kg, the water produced being still considered as a vapor. The NCV of ethanol and of gasoline are, respectively, 26.8 and 42.7 MJ/kg, and their ratio is #0.6.

  4. 4.

    Autothermic: The reactions involved in the process are globally endothermic, but some of them are exothermic and can provide an internal energy contribution to the process. An endothermic reaction needs an external heat to be provided to the system. An exothermic reaction creates heat that must be evacuated to the external ambient.

  5. 5.

    Allothermic: With contribution of external energy.

  6. 6.

    C 10 and C 20 : Hydrocarbon molecules with, respectively, 10 or 20 carbon atoms.

  7. 7.

    Hydrocarbon molecule with respectively five or six carbon atoms.

  8. 8.

    1MDa = 1M Dalton = 106 Da; 1 Da = 1 amu (atomic mass units).

  9. 9.

    Glucans are polysaccharides of D-glucose monomers, linked by glucosidic bonds.

Abbreviations

ADEME:

French Environment and Energy Management Agency

BtL:

Biomass to liquid

CVO:

Crude vegetable oils

Da:

amu (atomic mass units)

DIREM:

General Directorate for Energy and Raw Materials

DOE:

US Department of Energy

E10:

Gasoline with 10 % in volume of ethanol

E85:

Gasoline with 85 % in volume of ethanol

ETBE:

Ethyl tert-butyl ether

FAEE:

Fatty acid ethyl ester

FAME:

Fatty acid methyl ester

GHG:

Greenhouse gases

GtL:

Gas to liquid

HC:

Hydrocarbon

IEA:

International Energy Agency

MDa:

1MDa = 106 Da

MJ:

106 Joules

Mtoe:

106 toe

NCV:

Net calorific value

PAH:

Polycyclic aromatic hydrocarbons

PCW:

Plant cell wall

ppm:

Part per million

PS II:

Photosystem II (or water-plastoquinone oxidoreductase) is the first protein complex in light-dependent reactions.

TAG:

Triacylglycerol

Toe:

Ton of oil equivalent

v/v:

Volume by volume

References

  • ADEME (2011) Feuille de route biocarburants avancés (Advanced biofuels roadmap), Ademe. Retrieved from http://www2.ademe.fr/servlet/getDoc?cid=96&m=3&id=77923&p1=02&p2=10&ref=17597

  • ADEME/DIREM (2002) Bilan énergétique et gaz à effet de serre des filières de production de biocarburants en France (Greenhouse gas and energy balance in biofuel production pathways in France), ADEME/DIREM, Dec 2002. Retrieved from www.uclm.es/area/amf/Antoine/Energias/Informe_ADEME_fr.pdf

    Google Scholar 

  • Armstrong FA, Belsey NA, Cracknell JA, Goldet G, Parkin A, Reisner E, Vincent KA, Wait AF (2009) Dynamic electrochemical investigations of hydrogen oxidation and production by enzymes and implications for future technology. Chem Soc Rev 38(1):36–51

    Article  CAS  Google Scholar 

  • Ballerini D (2006) Les biocarburants, Etats des lieux, perspectives et enjeux du Développement (Biofuels, inventories, development perspectives and challenges). IFP Publications/Editions Technip, Paris

    Google Scholar 

  • BP (2011) British petroleum statistical review of world energy. Retrieved from http://www.bp.com/assets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_world_energy_full_report_2011.pdf

  • Brugna-Guiral M, Tron P, Nitschke W, Burlat B, Guigliarelli B, Stetter KO, Bruschi M, Giudici-Orticoni MT (2003) Biochemical, biophysical and phylogenetic characterisation of hyperthermostable hydrogenases from Aquifex aeolicus. Extremophile 7:145–157

    CAS  Google Scholar 

  • Ciaccafava A, Infossi P, Giudici-Orticoni MT, Lojou E (2010) Stabilization role of a phenothiazine derivative on the electrocatalytic oxidation of hydrogen via Aquifex aeolicus hydrogenase at graphite membrane electrodes. Langmuir 26:18534–18541

    Article  CAS  Google Scholar 

  • Ciaccafava A, Infossi P, Ilbert M, Guiral M, Lecomte S, Giudici-Orticoni MT, Lojou E (2011) Electrochemistry, AFM and PM-IRRA spectroscopy of immobilized hydrogenase: role of a trans-membrane helix on enzyme orientation for efficient H2 oxidation. Angewandte 123:1–5

    Article  Google Scholar 

  • Dementin S, Belle V, Bertrand P, Guigliarelli B, De Lacey A, Fernandez V, Rousset M, Léger C (2006) Changing the ligation of the distal [4Fe4S] cluster in [NiFe] hydrogenase impairs inter- and intramolecular electron transfers. J Am Chem Soc 128:5209–5218

    Article  CAS  Google Scholar 

  • Dementin S, Belle V, Champ S, Bertrand P, Guigliarelli B, De Lacey A, Fernandez V, Léger C, Rousset M (2008) Molecular modulation of hydrogenase activity. Int J Hydrog Energy 33:1503–1508

    Article  CAS  Google Scholar 

  • Dementin S, Leroux F, Cournac L, De Lacey AL, Volbeda A, Léger C, Burlat B, Martinez N, Champ S, Martin L, Sanganas O, Haumann M, Fernandez V, Guigliarelli B, Fontecilla-Camps JC, Rousset M (2009) Introduction of methionines in the gas channel makes [NiFe] hydrogenase aero-tolerant. J Am Chem Soc 131:10156–10164

    Article  CAS  Google Scholar 

  • DOE (2006) Breaking the biological barriers to cellulosic ethanol. In: A research roadmap resulting from the biomass to biofuel workshop, sponsored by the US DOE, Rockville, 7–9 Dec 2005

    Google Scholar 

  • Fernandez VM, De Lacey A, Rousset M, Cammack R (2007) Activation and inactivation of hydrogenase function and the catalytic cycle, spectroelectrochemical studies. Chem Rev 107:4304–4330

    Article  Google Scholar 

  • Fouchard S, Pruvost J, Degrenne B (2008) Investigation of H2 production using the green microalga Chlamydomonas reinhardtii in a fully controlled bioreactor fitted with on-line gas. Int J Hydrog Energy 33(13):3302–3310

    Article  CAS  Google Scholar 

  • Henrikson R (2010) Spirulina world food: how this micro algae can transform your health and our planet. Ronore Enterprises, Inc., Maui

    Google Scholar 

  • IEA (2009a) World energy outlook 2009. International Energy Agency, Paris

    Google Scholar 

  • IEA (2009b) Bioenergy – a sustainable and reliable energy source, Main Report, International Energy Agency. Retrieved from http://www.ieabioenergy.com/libitem.aspx?id=6479

  • IEA (2011) CO2 emissions from fuel combustion, Highlights International Energy Agency statistics. IEA, Paris

    Google Scholar 

  • Larkum AW, Ross IL, Kruse O, Hankamer B (2011) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 30(4):198–205

    Article  Google Scholar 

  • Liebgott P-P, Leroux F, Burlat B, Dementin S, Baffert C, Lautier T, Fourmond V, Ceccaldi P, Cavazza C, Meynial-Salles I, Soucaille P, Fontecilla-Camps J-C, Guigliarelli B, Bertrand P, Rousset M, Léger C (2009) Hydrogenases: the relation between diffusion along the substrate tunnel and resistance to oxygen. Nat Chem Biol 6:63–70

    Article  Google Scholar 

  • Lojou E, Luo XJ, Brugna M, Candoni N, Dementin S, Giudici-Orticoni MT (2008) Biocatalysts for fuel cells: efficient hydrogenase orientation for H2 oxidation at electrodes modified with carbon nanotubes. J Biol Inorg Chem 13:1157–1167

    Article  CAS  Google Scholar 

  • Luo XJ, Brugna M, Tron-Infossi P, Giudici-Orticoni MT, Lojou E (2009) Immobilization of the hyperthermophilic hydrogenase from Aquifex aeolicus bacterium onto gold and carbon nanotube electrodes for efficient H2 oxidation. J Biol Inorg Chem 14:1275–1288

    Article  CAS  Google Scholar 

  • Ma LJ, van der Does HC, Borkovich KA, Coleman J-J, Daboussi M-J, DiPietro A, Dufresne D, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim WB, Woloshuk C, Xie X, Xu JR, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RAE, Chapman S, Coulson R, Coutinho PM, Danchin EGJ, Diener A, Gale L, Gardiner DM, Goff S, Hammond-Kosack KE, Hilburn K, Houterman PM, Hua-Van A, Jonkers W, Kazan K, Kodira CD, Koehrsen M, Kumar L, Lee Y-H, Li L, Manners JM, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park S-Y, Proctor RH, Regev A, Ruiz-Roldan CM, Sain D, Sakthikumar S, Sykes S, Schwartz DC, Turgeon BG, Wapinski I, Yoder O, Young S, Zeng Q, Zhou S, Galagan J, Cuomo CA, Kistler HC, Rep M (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium oxysporum. Nature 464:367–373

    Article  CAS  Google Scholar 

  • Martinez D, Challacombe J, Hibbett D, Morgenstern I, Schmolls M, Kubicek CP, Martinez A, Ferreira P, Ruiz-Duenas F, Kersten P, Hammel K, Vanden WA, Gaskell J, Grigoriev I, Lindquist E, Sabat G, Splinter BS, Larrondo L, Canessa P, Yadav J, Doddapaneni H, Subramanian V, Pisabarro A, Lavín JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker S, Bruno K, Keneally W, Hoegger P, Kues U, Ramiaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Teter S, Yaver D, James T, Mokrejs M, Brettin T, Rokhsar D, Berka RM, Cullen D (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA 106:1954–1959

    Article  CAS  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122(1):127–136

    Article  CAS  Google Scholar 

  • Mingardon F, Chanal A, Lopez-Contreras AM, Dray C, Bayer EA, Fierobe H-P (2007) Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl Environ Microbiol 73:3822–3832

    Article  CAS  Google Scholar 

  • Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65(5):520–529

    Article  CAS  Google Scholar 

  • Pandelia M-E, Tron-Infossi P, Giudici-Orticoni M-T, Lubitz W (2010a) The oxygen-tolerant hydrogenase I from Aquifex aeolicus weakly interacts with carbon monoxide: an electrochemical and time resolved FTIR study. Biochemistry 49(41):8873–8881

    Article  CAS  Google Scholar 

  • Pandelia ME, Fourmond V, Tron P, Lojou E, Bertrand P, Léger C, Giudici-Orticoni M-T, Lubitz W (2010b) The membrane-bound hydrogenase I from the hyperthermophilic bacterium Aquifex aeolicus: enzyme activation, redox intermediates and oxygen tolerance. J Am Chem Soc 132:6991–7004

    Article  CAS  Google Scholar 

  • Pandelia ME, Nitschke W, Infossi P, Giudici-Orticoni M-T, Bill E, Lubitz W (2011) Characterization of a unique [4Fe4S] cluster in the electron transfer chain of the oxygen tolerant NiFe hydrogenase of Aquifex aeolicus. PNAS 108(15):6097–6102

    Article  CAS  Google Scholar 

  • Pruvost J, Van Vooren G, Cogne G, Legrand J (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour Technol 100(23):5988–5995

    Article  CAS  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 4:486–501

    Article  Google Scholar 

  • Rousset M, Cournac L (2008) Towards hydrogenase engineering for hydrogen production. In: Wall JD, Harwood CS, Demain A (eds) Bioenergy. ASM Press, Washington, DC, pp 249–257

    Google Scholar 

  • Shi L, Belchik SM, Plymale AE, Heald S, Dohnalkova AC, Sybirna K, Bottin H, Squier TC, Zachara JM, Fredrickson JK (2011) Purification and characterisation of the [NiFe]-hydrogenase of Shewanella oneidensis MR-1. Appl Environ Microbiol 77(16):5584–5590

    Article  CAS  Google Scholar 

  • Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B (2010) Future prospects of microalgal biofuel production systems. Trends Plant Sci 10:554–564

    Article  Google Scholar 

  • Weiner RM, Taylor LE, Henrissat B, Hauser L, Land M, Coutinho PM, Rancurel C, Saunders EH, Longmire AG, Zhang H, Bayer EA, Gilbert HJ, Larimer F, Zhulin IB, Ekborg NA, Lamed R, Richardson PM, Borovok I, Hutcheson S (2008) Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2–40 T. PLoS Genet 4(5):e1000087

    Article  Google Scholar 

  • Yang JC, Madupu R, Durkin AS, Ekborg NA, Pedamallu CS, Hostetler JB, Radune D, Toms BS, Henrissat B, Coutinho PM, Schwarz S, Field L, Trindade-Silva AE, Soares CA, Elshahawi S, Hanora A, Schmidt EW, Haygood MG, Posfai J, Benner J, Madinger C, Nove J, Anton B, Chaudhary K, Foster J, Holman A, Kumar S, Lessard PA, Luyten YA, Slatko B, Wood N, Wu B, Teplitski M, Mougous JD, Ward N, Eisen JA, Badger JH, Distel DL (2009) The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS One 4:e6085

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Michel Most .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Most, J.M., Giudici-Orticoni, M.T., Rousset, M., Bruschi, M. (2013). Biomass for Energy: Energetic and Environmental Challenges of Biofuels. In: Saulnier, J., Varella, M. (eds) Global Change, Energy Issues and Regulation Policies. Integrated Science & Technology Program, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6661-7_9

Download citation

Publish with us

Policies and ethics