Advertisement

Biomass for Energy: Energetic and Environmental Challenges of Biofuels

  • Jean Michel Most
  • Marie Thérèse Giudici-Orticoni
  • Marc Rousset
  • Mireille Bruschi
Chapter
Part of the Integrated Science & Technology Program book series (ISTP, volume 2)

Abstract

Transportation is 94 % dependent on oil, represents around 20 % of global consumption of energy, and is responsible for 23 % of total emissions from fossil fuels. For several years, progress has been made to enhance the energy efficiency of the systems, but increasing the part of biofuel still seems irremediable both for environmental, economic, and energy independence reasons. Fuel production from biomass is clearly considered as an important substitute for liquid fossil fuels such as bioethanol for motor gasoline, biodiesel for diesel, jet fuel for biokerosene, and for gaseous fuels (hydrogen, natural gas for vehicles, biomethane, etc.). This chapter presents the main pathways for the production of biofuels, and classifies their degree of maturity:
  • The first-generation processes that value the reserves of a plant (starch, sugar, oil) are now mature and industrially deployed.

  • The second generation processes extend their resource to the whole plant tissues (agricultural, forest) or to organic waste, and are almost under scientific control but they still need more economic and energetic assessment before being commercially deployed.

  • The last innovative pathway, the advanced or third biofuel generation, shows significant potential by using bioalgae or microorganisms capable of producing much more biomass oil convertible into biodiesel and gaseous fuels such as methane or hydrogen.

Keywords

First-generation biofuels Second-generation biofuels Algae for energy Biohydrogen Biodiesel Bioethanol 

List of Acronyms

ADEME

French Environment and Energy Management Agency

BtL

Biomass to liquid

CVO

Crude vegetable oils

Da

amu (atomic mass units)

DIREM

General Directorate for Energy and Raw Materials

DOE

US Department of Energy

E10

Gasoline with 10 % in volume of ethanol

E85

Gasoline with 85 % in volume of ethanol

ETBE

Ethyl tert-butyl ether

FAEE

Fatty acid ethyl ester

FAME

Fatty acid methyl ester

GHG

Greenhouse gases

GtL

Gas to liquid

HC

Hydrocarbon

IEA

International Energy Agency

MDa

1MDa = 106 Da

MJ

106 Joules

Mtoe

106 toe

NCV

Net calorific value

PAH

Polycyclic aromatic hydrocarbons

PCW

Plant cell wall

ppm

Part per million

PS II

Photosystem II (or water-plastoquinone oxidoreductase) is the first protein complex in light-dependent reactions.

TAG

Triacylglycerol

Toe

Ton of oil equivalent

v/v

Volume by volume

References

  1. ADEME (2011) Feuille de route biocarburants avancés (Advanced biofuels roadmap), Ademe. Retrieved from http://www2.ademe.fr/servlet/getDoc?cid=96&m=3&id=77923&p1=02&p2=10&ref=17597
  2. ADEME/DIREM (2002) Bilan énergétique et gaz à effet de serre des filières de production de biocarburants en France (Greenhouse gas and energy balance in biofuel production pathways in France), ADEME/DIREM, Dec 2002. Retrieved from www.uclm.es/area/amf/Antoine/Energias/Informe_ADEME_fr.pdfGoogle Scholar
  3. Armstrong FA, Belsey NA, Cracknell JA, Goldet G, Parkin A, Reisner E, Vincent KA, Wait AF (2009) Dynamic electrochemical investigations of hydrogen oxidation and production by enzymes and implications for future technology. Chem Soc Rev 38(1):36–51CrossRefGoogle Scholar
  4. Ballerini D (2006) Les biocarburants, Etats des lieux, perspectives et enjeux du Développement (Biofuels, inventories, development perspectives and challenges). IFP Publications/Editions Technip, ParisGoogle Scholar
  5. Brugna-Guiral M, Tron P, Nitschke W, Burlat B, Guigliarelli B, Stetter KO, Bruschi M, Giudici-Orticoni MT (2003) Biochemical, biophysical and phylogenetic characterisation of hyperthermostable hydrogenases from Aquifex aeolicus. Extremophile 7:145–157Google Scholar
  6. Ciaccafava A, Infossi P, Giudici-Orticoni MT, Lojou E (2010) Stabilization role of a phenothiazine derivative on the electrocatalytic oxidation of hydrogen via Aquifex aeolicus hydrogenase at graphite membrane electrodes. Langmuir 26:18534–18541CrossRefGoogle Scholar
  7. Ciaccafava A, Infossi P, Ilbert M, Guiral M, Lecomte S, Giudici-Orticoni MT, Lojou E (2011) Electrochemistry, AFM and PM-IRRA spectroscopy of immobilized hydrogenase: role of a trans-membrane helix on enzyme orientation for efficient H2 oxidation. Angewandte 123:1–5CrossRefGoogle Scholar
  8. Dementin S, Belle V, Bertrand P, Guigliarelli B, De Lacey A, Fernandez V, Rousset M, Léger C (2006) Changing the ligation of the distal [4Fe4S] cluster in [NiFe] hydrogenase impairs inter- and intramolecular electron transfers. J Am Chem Soc 128:5209–5218CrossRefGoogle Scholar
  9. Dementin S, Belle V, Champ S, Bertrand P, Guigliarelli B, De Lacey A, Fernandez V, Léger C, Rousset M (2008) Molecular modulation of hydrogenase activity. Int J Hydrog Energy 33:1503–1508CrossRefGoogle Scholar
  10. Dementin S, Leroux F, Cournac L, De Lacey AL, Volbeda A, Léger C, Burlat B, Martinez N, Champ S, Martin L, Sanganas O, Haumann M, Fernandez V, Guigliarelli B, Fontecilla-Camps JC, Rousset M (2009) Introduction of methionines in the gas channel makes [NiFe] hydrogenase aero-tolerant. J Am Chem Soc 131:10156–10164CrossRefGoogle Scholar
  11. DOE (2006) Breaking the biological barriers to cellulosic ethanol. In: A research roadmap resulting from the biomass to biofuel workshop, sponsored by the US DOE, Rockville, 7–9 Dec 2005Google Scholar
  12. Fernandez VM, De Lacey A, Rousset M, Cammack R (2007) Activation and inactivation of hydrogenase function and the catalytic cycle, spectroelectrochemical studies. Chem Rev 107:4304–4330CrossRefGoogle Scholar
  13. Fouchard S, Pruvost J, Degrenne B (2008) Investigation of H2 production using the green microalga Chlamydomonas reinhardtii in a fully controlled bioreactor fitted with on-line gas. Int J Hydrog Energy 33(13):3302–3310CrossRefGoogle Scholar
  14. Henrikson R (2010) Spirulina world food: how this micro algae can transform your health and our planet. Ronore Enterprises, Inc., MauiGoogle Scholar
  15. IEA (2009a) World energy outlook 2009. International Energy Agency, ParisGoogle Scholar
  16. IEA (2009b) Bioenergy – a sustainable and reliable energy source, Main Report, International Energy Agency. Retrieved from http://www.ieabioenergy.com/libitem.aspx?id=6479
  17. IEA (2011) CO2 emissions from fuel combustion, Highlights International Energy Agency statistics. IEA, ParisGoogle Scholar
  18. Larkum AW, Ross IL, Kruse O, Hankamer B (2011) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 30(4):198–205CrossRefGoogle Scholar
  19. Liebgott P-P, Leroux F, Burlat B, Dementin S, Baffert C, Lautier T, Fourmond V, Ceccaldi P, Cavazza C, Meynial-Salles I, Soucaille P, Fontecilla-Camps J-C, Guigliarelli B, Bertrand P, Rousset M, Léger C (2009) Hydrogenases: the relation between diffusion along the substrate tunnel and resistance to oxygen. Nat Chem Biol 6:63–70CrossRefGoogle Scholar
  20. Lojou E, Luo XJ, Brugna M, Candoni N, Dementin S, Giudici-Orticoni MT (2008) Biocatalysts for fuel cells: efficient hydrogenase orientation for H2 oxidation at electrodes modified with carbon nanotubes. J Biol Inorg Chem 13:1157–1167CrossRefGoogle Scholar
  21. Luo XJ, Brugna M, Tron-Infossi P, Giudici-Orticoni MT, Lojou E (2009) Immobilization of the hyperthermophilic hydrogenase from Aquifex aeolicus bacterium onto gold and carbon nanotube electrodes for efficient H2 oxidation. J Biol Inorg Chem 14:1275–1288CrossRefGoogle Scholar
  22. Ma LJ, van der Does HC, Borkovich KA, Coleman J-J, Daboussi M-J, DiPietro A, Dufresne D, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim WB, Woloshuk C, Xie X, Xu JR, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RAE, Chapman S, Coulson R, Coutinho PM, Danchin EGJ, Diener A, Gale L, Gardiner DM, Goff S, Hammond-Kosack KE, Hilburn K, Houterman PM, Hua-Van A, Jonkers W, Kazan K, Kodira CD, Koehrsen M, Kumar L, Lee Y-H, Li L, Manners JM, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park S-Y, Proctor RH, Regev A, Ruiz-Roldan CM, Sain D, Sakthikumar S, Sykes S, Schwartz DC, Turgeon BG, Wapinski I, Yoder O, Young S, Zeng Q, Zhou S, Galagan J, Cuomo CA, Kistler HC, Rep M (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium oxysporum. Nature 464:367–373CrossRefGoogle Scholar
  23. Martinez D, Challacombe J, Hibbett D, Morgenstern I, Schmolls M, Kubicek CP, Martinez A, Ferreira P, Ruiz-Duenas F, Kersten P, Hammel K, Vanden WA, Gaskell J, Grigoriev I, Lindquist E, Sabat G, Splinter BS, Larrondo L, Canessa P, Yadav J, Doddapaneni H, Subramanian V, Pisabarro A, Lavín JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker S, Bruno K, Keneally W, Hoegger P, Kues U, Ramiaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Teter S, Yaver D, James T, Mokrejs M, Brettin T, Rokhsar D, Berka RM, Cullen D (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA 106:1954–1959CrossRefGoogle Scholar
  24. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122(1):127–136CrossRefGoogle Scholar
  25. Mingardon F, Chanal A, Lopez-Contreras AM, Dray C, Bayer EA, Fierobe H-P (2007) Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl Environ Microbiol 73:3822–3832CrossRefGoogle Scholar
  26. Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65(5):520–529CrossRefGoogle Scholar
  27. Pandelia M-E, Tron-Infossi P, Giudici-Orticoni M-T, Lubitz W (2010a) The oxygen-tolerant hydrogenase I from Aquifex aeolicus weakly interacts with carbon monoxide: an electrochemical and time resolved FTIR study. Biochemistry 49(41):8873–8881CrossRefGoogle Scholar
  28. Pandelia ME, Fourmond V, Tron P, Lojou E, Bertrand P, Léger C, Giudici-Orticoni M-T, Lubitz W (2010b) The membrane-bound hydrogenase I from the hyperthermophilic bacterium Aquifex aeolicus: enzyme activation, redox intermediates and oxygen tolerance. J Am Chem Soc 132:6991–7004CrossRefGoogle Scholar
  29. Pandelia ME, Nitschke W, Infossi P, Giudici-Orticoni M-T, Bill E, Lubitz W (2011) Characterization of a unique [4Fe4S] cluster in the electron transfer chain of the oxygen tolerant NiFe hydrogenase of Aquifex aeolicus. PNAS 108(15):6097–6102CrossRefGoogle Scholar
  30. Pruvost J, Van Vooren G, Cogne G, Legrand J (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour Technol 100(23):5988–5995CrossRefGoogle Scholar
  31. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 4:486–501CrossRefGoogle Scholar
  32. Rousset M, Cournac L (2008) Towards hydrogenase engineering for hydrogen production. In: Wall JD, Harwood CS, Demain A (eds) Bioenergy. ASM Press, Washington, DC, pp 249–257Google Scholar
  33. Shi L, Belchik SM, Plymale AE, Heald S, Dohnalkova AC, Sybirna K, Bottin H, Squier TC, Zachara JM, Fredrickson JK (2011) Purification and characterisation of the [NiFe]-hydrogenase of Shewanella oneidensis MR-1. Appl Environ Microbiol 77(16):5584–5590CrossRefGoogle Scholar
  34. Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B (2010) Future prospects of microalgal biofuel production systems. Trends Plant Sci 10:554–564CrossRefGoogle Scholar
  35. Weiner RM, Taylor LE, Henrissat B, Hauser L, Land M, Coutinho PM, Rancurel C, Saunders EH, Longmire AG, Zhang H, Bayer EA, Gilbert HJ, Larimer F, Zhulin IB, Ekborg NA, Lamed R, Richardson PM, Borovok I, Hutcheson S (2008) Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2–40 T. PLoS Genet 4(5):e1000087CrossRefGoogle Scholar
  36. Yang JC, Madupu R, Durkin AS, Ekborg NA, Pedamallu CS, Hostetler JB, Radune D, Toms BS, Henrissat B, Coutinho PM, Schwarz S, Field L, Trindade-Silva AE, Soares CA, Elshahawi S, Hanora A, Schmidt EW, Haygood MG, Posfai J, Benner J, Madinger C, Nove J, Anton B, Chaudhary K, Foster J, Holman A, Kumar S, Lessard PA, Luyten YA, Slatko B, Wood N, Wu B, Teplitski M, Mougous JD, Ward N, Eisen JA, Badger JH, Distel DL (2009) The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS One 4:e6085CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jean Michel Most
    • 1
  • Marie Thérèse Giudici-Orticoni
    • 2
  • Marc Rousset
    • 2
  • Mireille Bruschi
    • 2
  1. 1.Institut P’, CNRS UPR 3346/ENSMA/Université de PoitiersFuturoscope Chasseneuil, CedexFrance
  2. 2.Laboratoire de Bioénergétique et Ingénierie des Protéines CNRSMarseille, Cedex 20France

Personalised recommendations