Skip to main content

Introduction to Hydrogen and Fuel Cell Technologies and Their Contribution to a Sustainable Energy Future

  • Chapter
  • First Online:
Book cover Global Change, Energy Issues and Regulation Policies

Part of the book series: Integrated Science & Technology Program ((ISTP,volume 2))

Abstract

Research and development of hydrogen and fuel cell technologies are motivated by the same drivers as for other new energy production/conversion/storage options, in particular the increase in greenhouse gas emissions and in sea and land mass temperatures, and peaking of oil production capacity and the technical difficulties and safety issues associated with extracting oil from offshore deep drilling below the seabed, which together lead towards a global requirement for use of lower fossil carbon energy sources. In this context, this chapter outlines actual and potential roles for hydrogen and fuel cell technologies. It provides a short historical perspective of fuel cells and describes fuel cell types and their applications, in particular automotive and stationary fuel cell uses. Directions in fuel cell materials research on electrocatalysts and their supports and electrolyte membranes are described in a final section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFC:

Alkaline fuel cell

CO:

Carbon monoxide

CO2 :

Carbon dioxide

DLR:

Deutsche Zentrum für Luft- und Raumfahrt (German Aerospace Centre)

e-:

Symbol of electron

EU:

European Union

EUCAR:

European Council for Automotive R&D

FCHV:

Fuel cell hydrogen vehicle

FCV:

Fuel cell vehicle

Fe/N/C:

Iron, nitrogen, carbon catalyst

H+:

Proton (hydrogen nucleus)

H2 :

Hydrogen molecule

HOPG:

Highly oriented pyrolytic graphite

Hyfleet CUTE:

This is a European project comparing the advantages and disadvantages of hydrogen internal combustion engine (ICE) buses with fuel cell buses. CUTE stands for Clean Urban Transport for Europe and the goal of the project is to test and demonstrate hydrogen buses in 10 different cities in Europe, Asia, and Australia to reduce CO2 emissions and move away from fossil fuels.

IPCC:

Intergovernmental Panel on Climate Change

IPHE:

International Partnership for Hydrogen and Fuel Cells in the Economy.

kW:

Kilowatt (SI power unit)

mb/d:

Million barrels per day

MCFC:

Molten carbonate fuel cell

MEA:

Membrane electrode assembly

OPEC:

Organization of the Petroleum Exporting Countries

PAFC:

Phosphoric acid fuel cell

PCFC:

Proton ceramic fuel cell

PEM:

Polymer electrolyte membrane

PEMFC:

Proton exchange membrane fuel cells, also known as polymer electrolyte fuel cells (PEFC)

PFSA:

Perfluorosulfonic acid

Pt/M:

Alloy of platinium with a metal (M)

Pt:

Symbol of platinum

PURE:

Promoting Unst Renewable Energy (Unst is one of the North Isles of the Shetland Islands, Scotland)

SI:

Système International d’unités (International System of units)

SOFC:

Solid oxide fuel cell

WHFS:

Worldwide hydrogen fueling stations

References

  • Arcella V, Ghielmi A, Tommasi G (2003) High performance perfluoropolymer films and membranes. Ann N Y Acad Sci 984:226–244

    Article  CAS  Google Scholar 

  • Aricò AS, Di Blasi A, Brunaccini G, Sergi F, Dispenza G, Andaloro L, Ferraro M, Antonucci V, Asher P, Buche S, Fongalland D, Hards GA, Sharman JDB, Bayer A, Heinz G, Zandonà N, Zuber R, Gebert M, Corasaniti M, Ghielmi A, Jones DJ (2010) High temperature operation of a solid polymer electrolyte fuel cell stack based on a new ionomer membrane. Fuel Cells 10:1013–1023

    Article  Google Scholar 

  • Bauer A, Song C, Ignaszak A, Hui R, Zhang J, Chevallier L, Jones D, Roziere J (2010) Improved stability of mesoporous carbon fuel cell catalyst support through incorporation of TiO2. Electrochimica Acta 55:8365–8370

    Article  CAS  Google Scholar 

  • Cavaliere S, Subianto S, Savych I, Jones DJ, Roziere J (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4:4761–4785

    Article  CAS  Google Scholar 

  • Cavaliere-Jaricot S, Etcheberry A, Herlem M, Noel V, Perez H (2007) Electrochemistry at capped platinum nanoparticle Langmuir Blodgett films: a study of the influence of platinum amount and of number of LB layers. Electrochimica Acta 52:2285–2293

    Article  CAS  Google Scholar 

  • Joint Research Centre – EUCAR – CONCAWE (2008) Well to wheels analysis of future automotive fuels and powertrains in the European context. Retrieved 26 Jan 2012, from http://ies.jrc.ec.europa.eu/uploads/media/V3.1%20TTW%20Report%2007102008.pdf

  • d’Arbigny JB, Taillades G, Marrony M, Jones DJ, Roziere J (2011) Hollow microspheres with a tungsten carbide kernel for PEMFC application. Chem Commun 47:7950–7952

    Article  Google Scholar 

  • Debe MK, Schmoeckel AK, Vernstrom GD, Atanasoski R (2006) High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J Power Sources 161:1002–1011

    Article  CAS  Google Scholar 

  • DLR (2010) Antares H3: DLR and Lange aviation develop the next generation of fuel-cell powered aircraft. Retrieved 26 Jan 2012, from http://www.dlr.de/en/desktopdefault.aspx/tabid-6216/10226_read-26189/

  • Earth Systems Research Laboratory (2011) Trends in atmospheric CO2 at Mauna Loa, Hawaii, 2011. Retrieved 26 Jan 2012, from http://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html

  • Elezovic NR, Babic BM, Radmilovic VR, Vracar LM, Krstajic NV (2009) Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction. Electrochimica Acta 54:2404–2409

    Article  CAS  Google Scholar 

  • Friedrich KA, Büchi FN (2008) Fuel cells using hydrogen. In: Züttel A, Borgschule A, Schlapbach L (eds) Hydrogen as a future energy carrier. WILEY-VCH, Weinheim, pp 335–364

    Chapter  Google Scholar 

  • Fuel Cells 2000 (2009) Worldwide hydrogen fueling stations. Retrieved 26 Jan 2012, from http://www.fuelcells.org/info/charts/h2fuelingstations.pdf

  • Gancs L, Kobayashi T, Debe MK, Atanasoski R, Wieckowsk A (2008) Crystallographic characteristics of nanostructured thin-film fuel cell electrocatalysts: a HRTEM study. Chem Mater 20:2444–2454

    Article  CAS  Google Scholar 

  • Gasteiger HA, Baker DR, Carter RN, Gu W, Liu Y, Wagner FT, Yu PT (2010) Electrocatalysis and catalyst degradation challenges in proton exchange membrane fuel cells. In: Stolten D (ed) Hydrogen and fuel cells. WILEY-VCH, Weinheim, pp 1–14

    Google Scholar 

  • Global Hydrogen Bus Platform. On-site steam reforming. Retrieved 26 Jan 2012, from http://www.global-hydrogen-bus-platform.com/Technology/HydrogenProduction/reforming

  • Grohs JR, Li Y, Dillard DA, Case SW, Ellis MW, Lai Y-H, Gittleman CS (2010) Evaluating the time and temperature dependent biaxial strength of Gore-Select series 57 proton exchange membrane using a pressure loaded blister test. J Power Sources 195:527–531

    Article  CAS  Google Scholar 

  • Grove WR (1839) On voltaic series and the combination of gases by platinum. Lond Edinb Philos Mag J Sci Ser 3 14:127–130

    Google Scholar 

  • Grove WR (1842) On a gaseous voltaic battery. Lond Edinb Philos Mag J Sci Ser 3 21:417–420

    Google Scholar 

  • HyFleet – Clean Urban Transport for Europe. Consulted 26 Jan 2012, from http://www.global-hydrogen-bus-platform.com/Home

  • International Partnership for Hydrogen and Fuel Cells in the Economy (2009) http://www.iphe.net/resources/demonstration.html

  • IPCC (2007) IPCC fourth assessment report: climate change 2007 section 2.4: causes of climate change. Retrieved 26 Jan 2012, from http://www.ipcc.ch/publications_and_data/ar4/syr/en/mains2-4.html

  • IPCC (2009) IPCC expert meeting on detection and attribution related to anthropogenic climate change. Retrieved 26 Jan 2012, from http://www.ipcc.ch/pdf/supporting-material/expert-meeting-detection-anthropogenic-2009-09.pdf

  • Jaouen F, Proietti E, Lefevre M, Chenitz R, Dodelet J-P, Wu G, Chung HT, Johnston CM, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4:114–130

    Article  CAS  Google Scholar 

  • Jones DJ, Rozière J (2008) Advances in the development of inorganic/organic membranes for fuel cell applications. Adv Polym Sci 215:219–264

    CAS  Google Scholar 

  • Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature (Lond) 412:169–172

    Article  CAS  Google Scholar 

  • Li QF, Jensen JO, Savinell RF, Bjerrum NJ (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477

    Article  CAS  Google Scholar 

  • Liu J, Suraweera N, Keffer DJ, Cui S, Paddison SJ (2010) On the relationship between polymer electrolyte structure and hydrated morphology of perfluorosulfonic acid membranes. J Phys Chem C 114:11279–11292

    Article  CAS  Google Scholar 

  • Neyerlin KC, Srivastava R, Yu C, Strasser P (1009) Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR). J Power Sources 186:261–267

    Article  Google Scholar 

  • Park C-H, Lee C-H, Guiver MD, Lee Y-M (2011) Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells. Prog Polym Sci 36:1443–1498

    Article  CAS  Google Scholar 

  • Peckham TJ, Yang Y, Holdcroft S (2010) Proton exchange membranes. In: Wilkinson DP, Zhang JJ, Hui R, Fergus J, Li X (eds) Proton exchange membrane fuel cells. CRC Press, Boca Raton

    Google Scholar 

  • Proietti E, Jaouen F, Lefevre M, Larouche N, Tian J, Herranz J, Dodelet J-P (2011) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun 2:1427/1–1427/9

    Article  CAS  Google Scholar 

  • Pure Energy Centre (2007) Promoting Unst Renewable Energy (PURE) project – from wind to green fuel. Retrieved 26 Jan 2012, from http://www.pureenergycentre.com/pureenergycentre/Pureprojectcasestudy.pdf

  • Rabat H, Brault P (2008) Plasma sputtering deposition of PEMFC porous carbon platinum electrodes. Fuel Cells 8:81–86

    Article  CAS  Google Scholar 

  • Rozière J, Jones DJ (2003) Non-fluorinated polymer materials for proton exchange membrane fuel cells. Annu Rev Mater Res 33:503–555

    Article  Google Scholar 

  • Saha MS, Banis MN, Zhang Y, Li R, Sun X, Cai M, Wagner FT (2009) Tungsten oxide nanowires grown on carbon paper as Pt electrocatalyst support for high performance proton exchange membrane fuel cells. J Power Sources 192:330–335

    Article  CAS  Google Scholar 

  • Schönbein CF (1839) On the voltaic polarization of certain solid and fluid substances. Lond Edinb Philos Mag J Sci Ser 3 14:43–45

    Google Scholar 

  • Thompsett D (2010) Recent developments in electrocatalyst activity and stability for proton exchange membrane fuel cells. In: Wilkinson DP, Zhang JJ, Hui R, Fergus J, Li X (eds) Proton exchange membrane fuel cells. CRC Press, Boca Raton

    Google Scholar 

  • Tsuji M, Kubokawa M, Yano R, Miyamae N, Tsuji T, Jun M-S, Hong S, Lim S, Yoon S-H, Mochida I (2007) Fast preparation of PtRu catalysts supported on carbon nanofibers by the microwave-polyol method and their application to fuel cells. Langmuir 23:387–390

    Article  CAS  Google Scholar 

  • Vielstich W, Lamm A, Gasteiger H (eds) (2003) Handbook of fuel cells. Wiley, Chichester

    Google Scholar 

  • Vielstich W, Harumi Y, Gasteiger HA (eds) (2009) Handbook of fuel cells. Wiley, Chichester

    Google Scholar 

  • Wang J, Swain GM (2003) Fabrication and evaluation of platinum/diamond composite electrodes for electrocatalysis. J Electrochem Soc 150:E24–E32

    Article  CAS  Google Scholar 

  • Wieser C (2004) Novel polymer electrolyte membranes for automotive applications – requirements and benefits. Fuel Cells 4:245–250

    Article  CAS  Google Scholar 

  • World Energy Outlook (2011) World energy outlook executive summary. Retrieved 26 Jan 2012, from http://www.worldenergyoutlook.org/docs/weo2011/executive_summary.pdf

  • Wu B, Hu D, Kuang Y, Yu Y, Zhang X, Chen J (2011) High dispersion of platinum-ruthenium nanoparticles on the 3,4,9,10-perylene tetracarboxylic acid-functionalized carbon nanotubes for methanol electro-oxidation. Chem Commun 47:5253–5255

    Article  CAS  Google Scholar 

  • Xie Z, Song C, Wilkinson DP, Zhang JJ (2010) Catalyst layers and fabrication. In: Wilkinson DP, Zhang JJ, Hui R, Fergus J, Li X (eds) Proton exchange membrane fuel cells. CRC Press, Boca Raton

    Google Scholar 

  • Zhang YM, Li L, Tang JK, Bauer B, Zhang W, Gao HR, Taillades-Jacquin M, Jones DJ, Rozière J, Lebedeva N, Mallant RKAM (2009) Development of covalently cross-linked and composite perfluorosulfonic acid membranes. ECS Trans 25:1469–1472

    Article  CAS  Google Scholar 

  • Zhao J, Jarvis K, Ferreira P, Manthiram A (2011) Performance and stability of Pd-Pt-Ni nanoalloy electrocatalysts in proton exchange membrane fuel cells. J Power Sources 196:4515–4523

    Article  CAS  Google Scholar 

  • Zhou Y, Pasquarelli R, Holme T, Berry J, Ginley D, O’Hayre R (2009) Improving PEM fuel cell catalyst activity and durability using nitrogen-doped carbon supports: observations from model Pt/HOPG systems. J Mater Chem 19:7830–7838

    Article  CAS  Google Scholar 

  • Züttel A (2008) Chapter 1: Introduction. In: Züttel A, Borgschule A, Schlapbach L (eds) Hydrogen as a future energy carrier. WILEY-VCH, Weinheim, pp 1–6

    Chapter  Google Scholar 

Download references

Acknowledgments

The author thanks Surya Subianto for his assistance with the graphics of this chapter. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2010-2013) under the call ENERGY-2010-10.2-1: Future Emerging Technologies for Energy Applications (FET) under contract 256821 QuasiDry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah J. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jones, D.J. (2013). Introduction to Hydrogen and Fuel Cell Technologies and Their Contribution to a Sustainable Energy Future. In: Saulnier, J., Varella, M. (eds) Global Change, Energy Issues and Regulation Policies. Integrated Science & Technology Program, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6661-7_8

Download citation

Publish with us

Policies and ethics