Skip to main content

Thermal Infrared Spectroscopy in the Laboratory and Field in Support of Land Surface Remote Sensing

  • Chapter
  • First Online:
Thermal Infrared Remote Sensing

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 17))

Abstract

Thermal infrared (TIR) spectra of Earth surface materials are used in a wide variety of applications. These applications can fall into either of two groups: (a) where the TIR emissivity spectra themselves are the primary interest, and are used to determine the chemical/physical parameters of minerals and rocks, soil, vegetation and man-made materials, or (b) where the primary interest is in the temperature of the objects under study, and where emissivity spectra are required inorder to best determine kinetic from radiant temperature. Unlike visible-near infrared (VNIR) and shortwave infrared (SWIR) instruments, TIR spectroscopy instrumentation often requires customization in order to acquire reliable and reproducible data, making thermal spectroscopy a potentially complex process. Within this chapter we intend to provide a simple starting point for the new user of thermal infrared spectroscopy, and a synoptic overview of the technique for the more experienced practitioner. We discuss the theoretical background, give examples of instrument setups and provide typical measurement scenarios for a number of land applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, JR, Hardy EE, Roach JT, Witmer RE (1976) A land use and land cover classification system for use with remote sensor data. Geologic survey professional paper, USGS, Washington, DC, p28

    Google Scholar 

  • Bacsik Z, Mink J, Keresztury G (2004) FTIR spectroscopy of the atmosphere. I. Principles and methods. Appl Spectrosc Rev 39(3):295–363. doi:10.1081/asr-200030192

    Article  Google Scholar 

  • Bacsik Z, Mink J, Keresztury G (2005) FTIR spectroscopy of the atmosphere part 2. Applications. Appl Spectrosc Rev 40(4):327–390. doi:10.1080/05704920500230906

    Article  Google Scholar 

  • Baldridge AM, Hook SJ, Grove CI, Rivera G (2009) The ASTER spectral library version 2.0. Remote Sens Environ 113(4):711–715. doi:10.1016/j.rse.2008.11.007

    Article  Google Scholar 

  • Bassani C, Cavalli RM, Cavalcante F, Cuomo V, Palombo A, Pascucci S et al (2007) Deterioration status of asbestos-cement roofing sheets assessed by analyzing hyperspectral data. Remote Sens Environ 109(3):361–378. doi:10.1016/j.rse.2007.01.014

    Article  Google Scholar 

  • Bower N, Lynch MJ, Knuteson RO, Revercomb HE (2001) High spectral resolution land surface temperature and emissivity measurement in the thermal infrared using Fourier transform spectroscopy. In: Sawchuk A (ed) Optical remote sensing, vol 52 of OSA trends in optics and photonics. Optical Society of America, paper OWA5. http://www.opticsinfobase.org/abstract.cfm?URI=ORS-2001-OWA5

  • Burrows JP, Platt U, Borrell P (2011) The remote sensing of tropospheric composition from space, Physics of earth and space environments 15. Springer, Heidelberg

    Book  Google Scholar 

  • Christensen PR, Bandfield JL, Hamilton VE, Howard DA, Lane MD, Piatek JL et al (2000) A thermal emission spectral library of rock-forming minerals. J Geophys Res Planets 105(E4):9735–9739

    Article  Google Scholar 

  • Clark RN, Swayze GA, Wise RA, Livo KE, Hoefen TM, Kokaly RF et al (2007) USGS digital spectral library splib06a. U.S. Geological Survey, Denver

    Google Scholar 

  • Coll C, Caselles V, Valor E, Rubio E (2003) Validation of temperature-emissivity separation and split-window methods from TIMS data and ground measurements. Remote Sens Environ 85(2):232–242. doi:10.1016/s0034-4257(03)00003-8

    Article  Google Scholar 

  • Dash P, Göttsche FM, Olesen FS, Fischer H (2002) Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends. Int J Remote Sens 23(13):2563–2594. doi:10.1080/01431160110115041

    Article  Google Scholar 

  • Gates DM (1980) Biophysical ecology. Springer, New York

    Book  Google Scholar 

  • Gillespie A, Rokugawa S, Matsunaga T, Cothern JS, Hook SJ, Kahle AB (1998) A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. Geosci Remote Sens IEEE Trans 36(4):1113–1126

    Article  Google Scholar 

  • Hecker C, van der Meijde M, van der Meer FD (2010) Thermal infrared spectroscopy on feldspars – successes, limitations and their implications for remote sensing. Earth Sci Rev 103(1–2):60–70. doi:10.1016/j.earscirev.2010.07.005

    Article  Google Scholar 

  • Hecker C, Hook SJ, van der Meijde M, Bakker W, van der Werff H, Wilbrink H et al (2011) Thermal infrared spectrometer for earth science remote sensing applications-instrument modifications and measurement procedures. Sensors 11(11):10981–10999 doi:10.3390/s111110981

    Article  Google Scholar 

  • Hook SJ, Kahle AB (1996) The micro Fourier transform interferometer (μFTIR) – a new field spectrometer for acquisition of infrared data of natural surfaces. Remote Sens Environ 56(3):172–181. doi:10.1016/0034-4257(95)00231-6

    Article  Google Scholar 

  • Hoover G, Kahle AB (1987) A thermal emission spectrometer for field use. Photogramm Eng Remote Sens 53:627–632

    Google Scholar 

  • Horton KA, Johnson JR, Lucey PG (1998) Infrared measurements of pristine and disturbed soils 2. Environmental effects and field data reduction. Remote Sens Environ 64(1):47–52

    Article  Google Scholar 

  • Hulley GC, Hook SJ, Manning E, Lee SY, Fetzer E (2009) Validation of the Atmospheric Infrared Sounder (AIRS) version 5 land surface emissivity product over the Namib and Kalahari deserts. J Geophys Res 114(D19), D19104. doi:10.1029/2009jd012351

    Article  Google Scholar 

  • Hulley GC, Hook SJ, Baldridge AM (2010) Investigating the effects of soil moisture on thermal infrared land surface temperature and emissivity using satellite retrievals and laboratory measurements. Remote Sens Environ 114(7):1480–1493. doi:10.1016/j.rse.2010.02.002

    Article  Google Scholar 

  • Huntington J, Whitbourn L, Mason P, Berman M, Schodlok MC (2010) HyLogging – voluminous industrial-scale reflectance spectroscopy of the earth’s subsurface. In: Huntinton JF (ed) Art, science and applications of reflectance spectroscopy symposium, Boulder, 23–25 Feb 2010, II, p 14

    Google Scholar 

  • Jacob F, Petitcolin F, Schmugge T, Vermote É, French A, Ogawa K (2004) Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors. Remote Sens Environ 90(2):137–152. doi:10.1016/j.rse.2003.11.015

    Article  Google Scholar 

  • Kahle AB, Alley RE (1992) Separation of temperature and emittance in remotely sensed radiance measurements. Remote Sens Environ 42(2):107–111. doi:10.1016/0034-4257(92)90093-y

    Article  Google Scholar 

  • Kahle AB, Madura DP, Soha JM (1980) Middle infrared multispectral aircraft scanner data: analysis for geological applications. Appl Opt 19(14):2279–2290

    Article  Google Scholar 

  • Kirkland L, Herr K, Keim E, Adams P, Salisbury JW, Hackwell J et al (2002) First use of an airborne thermal infrared hyperspectral scanner for compositional mapping. Remote Sens Environ 80(3):447–459

    Article  Google Scholar 

  • Korb AR, Dybwad P, Wadsworth W, Salisbury JW (1996) Portable Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity. Appl Opt 35(10):1679–1692

    Article  Google Scholar 

  • Korb AR, Salisbury JW, D’Aria DM (1999) Thermal-infrared remote sensing and Kirchhoff’s law 2. Field measurements. J Geophys Res Solid Earth 104(B7):15339–15350

    Article  Google Scholar 

  • Lammoglia T, de Souza Filho CR (2011) Spectroscopic characterization of oils yielded from Brazilian offshore basins: potential applications of remote sensing. Remote Sens Environ 115(10):2525–2535. doi:10.1016/j.rse.2011.04.038

    Article  Google Scholar 

  • Lee RJ (2011) Thermal emission spectroscopy of silicate glasses and melts: applications to remote sensing of glassy volcanic environments. Ph.D., Univeristy of Pittsburgh, Pittsburgh

    Google Scholar 

  • Lindermeir E, Haschberger P, Tank V, Dietl H (1992) Calibration of a Fourier transform spectrometer using three blackbody sources. Appl Opt 31(22):4527–4533

    Article  Google Scholar 

  • Lyon RJP (1965) Analysis of rocks by spectral infrared emission (8–25 microns). Econ Geol 60:715–736

    Article  Google Scholar 

  • Minnett PJ, Szczodrak M, Key EL (2005) Surface-based infrared interferometers – versatile sensors for the IPY. In: Proceedings of the 8th conference on polar meteorology and oceanography, San Diego, 10–13 Jan 2005

    Google Scholar 

  • Mitraka Z, Chrysoulakis N, Kamarianakis Y, Partsinevelos P, Tsouchlaraki A (2011) Improving the estimation of urban surface emissivity based on sub-pixel classification of high resolution satellite imagery. Remote Sens Environ 117:125–134. doi:10.1016/j.rse.2011.06.025

    Article  Google Scholar 

  • Murcray FH, Murcray DG, Williams WJ (1970) Infrared emissivity of lunar surface features 1. Balloon-borne observations. J Geophys Res 75(14):2662–2669. doi:10.1029/JB075i014p02662

    Article  Google Scholar 

  • Nicodemus FE (1965) Directional reflectance and emissivity of an opaque surface. Appl Opt 4:767–773

    Article  Google Scholar 

  • Pascucci S, Bassani C, Palombo A, Poscolieri M, Cavalli R (2008) Road asphalt pavements analyzed by airborne thermal remote sensing: preliminary results of the Venice highway. Sensors 8(2):1278–1296

    Article  Google Scholar 

  • Ramsey MS (2003) Mapping the city landscape from space: the advanced spaceborne thermal emission and reflectance radiometer (ASTER) urban environmental monitoring program. In: Heiken G, Fakundiny R, Sutter J (eds) Earth science in the city: a reader. AGU, Washington, DC, pp 337–361

    Chapter  Google Scholar 

  • Ramsey MS, Fink JH (1999) Estimating silicic lava vesicularity with thermal remote sensing: a new technique for volcanic mapping and monitoring. Bull Volcanol 61(1):32–39. doi:10.1007/s004450050260

    Article  Google Scholar 

  • Ribeiro da Luz B (2006) Attenuated total reflectance spectroscopy of plant leaves: a tool for ecological and botanical studies. New Phytol 172(2):305–318. doi:10.1111/j.1469-8137.2006.01823.x

    Article  Google Scholar 

  • Ribeiro da Luz B, Crowley JK (2007) Spectral reflectance and emissivity features of broad leaf plants: prospects for remote sensing in the thermal infrared (8.0–14.0 [mu]m). Remote Sens Environ 109(4):393–405. doi:10.1016/j.rse.2007.01.008

    Article  Google Scholar 

  • Ribeiro da Luz B, Crowley JK (2010) Identification of plant species by using high spatial and spectral resolution thermal infrared (8.0–13.5 [mu]m) imagery. Remote Sens Environ 114(2):404–413. doi:10.1016/j.rse.2009.09.019

    Article  Google Scholar 

  • Ruff SW, Christensen PR, Barbera PW, Anderson DL (1997) Quantitative thermal emission spectroscopy of minerals: a laboratory technique for measurement and calibration. J Geophys Res 102(B7):14899–14913

    Article  Google Scholar 

  • Sabol JDE, Gillespie AR, Abbott E, Yamada G (2009) Field validation of the ASTER temperature–emissivity separation algorithm. Remote Sens Environ 113(11):2328–2344. doi:10.1016/j.rse.2009.06.008

    Article  Google Scholar 

  • Salisbury JW (1986) Preliminary measurements of leaf spectral reflectance in the 8–14 μm region. Int J Remote Sens 7(12):1879–1886. doi:10.1080/01431168608948981

    Article  Google Scholar 

  • Salisbury JW (1998) Spectral measurements field guide. Defense Technology Information Center, Fort Belvoir, p 91

    Google Scholar 

  • Salisbury JW, D’Aria DM (1992) Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sens Environ 42(2):83–106

    Article  Google Scholar 

  • Salisbury JW, D’Aria DM (1994) Emissivity of terrestrial materials in the 3–5 μm atmospheric window. Remote Sens Environ 47(3):345–361. doi:10.1016/0034-4257(94)90102-3

    Article  Google Scholar 

  • Salisbury JW, Wald A (1992) The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals. Icarus 96(1):121–128. doi:10.1016/0019-1035(92)90009-v

    Article  Google Scholar 

  • Salisbury JW, Walter LS, Vergo N, D’Aria DM (1991) Infrared (2.1–25 μm) spectra of minerals. The Johns Hopkins University Press, Baltimore/London

    Google Scholar 

  • Salisbury JW, Wald A, D’Aria DM (1994) Thermal-infrared remote sensing and Kirchhoff’s Law 1. Laboratory measurements. J Geophys Res Solid Earth 99(B6):11897–11911

    Article  Google Scholar 

  • Salvaggio C, Miller CJ (2001) Comparison of field- and laboratory-collected midwave and longwave infrared emissivity spectra/data reduction techniques. In: Proceedings of the SPIE 4381, Algorithms for multispectral, hyperspectral, and ultraspectral imagery VII, Orlando, 2001, pp 549–558

    Google Scholar 

  • Sobrino JA, Cuenca J (1999) Angular variation of thermal infrared emissivity for some natural surfaces from experimental measurements. Appl Opt 38(18):3931–3936

    Article  Google Scholar 

  • Thomas HE, Watson IM, Kearney C, Carn SA, Murray SJ (2009) A multi-sensor comparison of sulphur dioxide emissions from the 2005 eruption of Sierra Negra volcano, Galápagos Islands. Remote Sens Environ 113(6):1331–1342. doi:10.1016/j.rse.2009.02.019

    Article  Google Scholar 

  • Ullah S, Schlerf M, Skidmore AK, Hecker C (2012) Identifying plant species using mid-wave infrared (2.5–6 μm) and thermal infrared (8–14 μm) emissivity spectra. Remote Sens Environ 118:95–102. doi:10.1016/j.rse.2011.11.008

    Article  Google Scholar 

  • Vaughan RG, Calvin WM, Taranik JV (2003) SEBASS hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping. Remote Sens Environ 85(1):48–63

    Article  Google Scholar 

  • Vaughan RG, Hook SJ, Calvin WM, Taranik JV (2005) Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images. Remote Sens Environ 99(1–2):140–158

    Article  Google Scholar 

  • Vincent RK, Hunt GR (1968) Infrared reflectance from mat surfaces. Appl Opt 7:53–59

    Article  Google Scholar 

  • Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86(3):370–384. doi:10.1016/s0034-4257(03)00079-8

    Article  Google Scholar 

  • Xu W, Wooster MJ, Grimmond CSB (2008) Modelling of urban sensible heat flux at multiple spatial scales: a demonstration using airborne hyperspectral imagery of Shanghai and a temperature–emissivity separation approach. Remote Sens Environ 112(9):3493–3510. doi:10.1016/j.rse.2008.04.009

    Article  Google Scholar 

  • URL1: http://www.specim.fi/products/sisu-hyperspectral-scanners/sisurock.html

  • URL2: http://www.telops.com

  • URL3: http://www.agilent.com

Download references

Acknowledgements

The authors would like to thank Steve Ruff and Chris MacLellan, as well as the companies Telops and Agilent Technologies for providing illustrations of their spectrometer setups.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph A. Hecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hecker, C.A., Smith, T.E.L., da Luz, B.R., Wooster, M.J. (2013). Thermal Infrared Spectroscopy in the Laboratory and Field in Support of Land Surface Remote Sensing. In: Kuenzer, C., Dech, S. (eds) Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6639-6_3

Download citation

Publish with us

Policies and ethics