Skip to main content

Mineral Mapping with Airborne Hyperspectral Thermal Infrared Remote Sensing at Cuprite, Nevada, USA

  • Chapter
  • First Online:

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 17))

Abstract

This is a case example of mineral mapping of unaltered and altered rocks at the Cuprite mining district, southwestern Nevada using the Spatially Enhanced Broadband Array Spectrograph System (SEBASS), a thermal infrared hyperspectral sensor that collects radiance measurements in the mid-wave infrared and thermal infrared portions of the electromagnetic spectrum. Cuprite, Nevada has been a test bed for a variety of multispectral and hyperspectral sensors that have predominantly covered the visible through short-wave infrared portion of the electromagnetic spectrum. In 2008, 20 SEBASS flight lines were collected at an average altitude of 4,735 m yielding an average 3.35 m ground sample distance (GSD).

Rock forming and alteration minerals found in this mining district have reststrahlen features (emission minima due to fast changes in refractive index with wavelength) in the thermal infrared portion of the electromagnetic spectrum (7.5–13.5 μm). Mineral mapping with hyperspectral thermal infrared data provides unique and complementary information to visible-shortwave (0.4–2.5 μm) hyperspectral data. Mineral maps were produced using a spectral feature fitting algorithm with publicly available mineral spectral libraries containing signatures.

These mineral maps were compared to the geological and alteration maps along with mineral maps generated by previous studies of visible-shortwave infrared hyperspectral sensors to assess some of the difference in mineral mapping with a hyperspectral thermal infrared sensor. This study shows that hyperspectral thermal infrared data can spectrally map rock forming minerals associated with unaltered rocks and alteration minerals associated with different phases of alteration in altered rocks at Cuprite, Nevada.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrams MJ, Ashley RP, Rowan LC, Goetz AFH, Kahle AB (1977) Mapping of hydrothermal alteration in the Cuprite mining district, Nevada, using aircraft scanner images for the spectral region 0.46 to 2.36 μm. Geology 5(12):713–718

    Article  Google Scholar 

  • Albers JP, Stewart JH (1972) Geology and mineral deposits of Esmeralda County, Nevada. Nev Bur Mines Geol Bull 78:80

    Google Scholar 

  • Allibone A, Hayden P, Cameron G, Duku F (2004) Paleoproterozoic gold deposits hosted by albite- and carbonate-altered tonalite in the Chirano District, Ghana, West Africa. Econ Geol 99:479–497

    Article  Google Scholar 

  • Ashley RP, Abrams MJ (1980) Alteration mapping using multispectral images – Cuprite mining district, Esmeralda County, Nevada. Open-File Report, United States Geological Survey, 17p, 14 plates, (some col.), maps; 28 cm

    Google Scholar 

  • Aslett Z, Taranik JV, Riley DN (2008) Mapping rock-forming minerals at daylight pass, Death Valley National Park, California, using SEBASS thermal-infrared hyperspectral image data. In: Geoscience and remote sensing symposium, 2008. IGARSS 2008. IEEE International, Boston

    Google Scholar 

  • Benavides J, Kyser TK, Clark AH, Stanley C, Oates C (2008a) Application of molar element ratio analysis of lag talus composite samples to the exploration for iron oxide–copper–gold mineralization: Mantoverde area, northern Chile. Geochem Explor Environ Anal 8(3–4):369–380

    Article  Google Scholar 

  • Benavides J, Kyser TK, Clark AH, Stanley C, Oates C (2008b) Exploration guidelines for copper-rich iron oxide–copper–gold deposits in the Mantoverde area, northern Chile: the integration of host-rock molar element ratios and oxygen isotope compositions. Geochem Explor Environ Anal 8(3–4):343–367

    Article  Google Scholar 

  • Calvin WM, Vaughan RG, Taranik JV, Smailbegovic A (2001) Mapping natural and human influenced acid sulfate weathering near Reno, NV using the SEBASS hyperspectral instrument. In: Geoscience and remote sensing symposium, 2001. IGARSS ’01. IEEE 2001 International. Sidney NSW, Australia

    Google Scholar 

  • Christensen PR, Bandfield JL, Hamilton VE, Howard DA, Lane MD, Piatek JL, Ruff SW, Stefanov WL (2000) A thermal emission spectral library of rock-forming minerals. J Geophys Res 105(E4):9735–9739

    Article  Google Scholar 

  • Clark RN, Roush TL (1984) Reflectance spectroscopy’ quantitative analysis techniques for remote sensing applications. J Geophys Res 89(B7):6329–6340

    Article  Google Scholar 

  • Clark RN, Swayze GA, Livo KE, Kokaly RF, Sutley SJ, Dalton JB, McDougal RR, Gent CA (2003) Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. J Geophys Res 108(E12):5131

    Article  Google Scholar 

  • Clark RN, Swayze GA, Wise R, Livo KE, Hoefen TM, Kokaly RF, Sutley SJ (2007) USGS digital spectral library splib06a, Digital data series 231. U.S. Geological Survey, Denver

    Google Scholar 

  • Crowley JK, Hook SJ (1996) Mapping playa evaporite minerals and associated sediments in Death Valley, CA, with multispectral thermal infrared images. J Geophys Res 101(B1):643–660

    Article  Google Scholar 

  • Cudahy TJ, Whitbourn LB, Connor PM, Mason P, Phillips RN (1999) Mapping surface mineralogy and scattering behavior using backscattered reflectance from a hyperspectral midinfrared airborne CO2 laser system (MIRACO2LAS). IEEE Trans Geosci Remote Sens 37(4):2019–2034

    Article  Google Scholar 

  • Cudahy TJ, Okada K, Yamato Y, Maekawa M, Hackwell JA, Huntington JF (2000) Mapping skarn and porphyry alteration mineralogy at Yerington, Nevada, using airborne hyperspectral TIR SEBASS data. CSIRO Exploration and Mining report 734R. CSIRO Exploration and Mining, Underwood Avenue, Floreat Park, WA, Australia, p 78

    Google Scholar 

  • Dykstra JD, Segal DB (1985) Analysis of AIS data of the recluse oil field, Recluse, Wyoming. In: Proceedings AIS workshop. NASA Jet Propulsion Laboratory, Pasadena, CA

    Google Scholar 

  • Farmer VC (1974) The infrared spectra of minerals. Mineralogical Society, London

    Google Scholar 

  • Gillespie AR (1986) Lithologic mapping of silicate rocks using TIMS. The TIMS data users’ workshop. NASA Jet Propulsion Laboratory, Pasadena

    Google Scholar 

  • Gillespie AR, Kahle AB, Palluconi FD (1984) Mapping alluvial fans in Death Valley, CA using multispectral thermal infrared images. Geophys Res Lett 11:1153–1156

    Article  Google Scholar 

  • Gillespie AR, Kahle AB, Walker RE (1986) Color enhancement of highly correlated images. I. Decorrelation and HSI contrast stretches. Remote Sens Environ 20(3):209–235

    Article  Google Scholar 

  • Hackwell JA, Warren DW, Bongiovi RP, Hansel SJ, Hayhurst TL, Mabry DJ, Sivjee MG, Skinner JW (1996) LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing. SPIE, Denver

    Google Scholar 

  • Hall JL, Hackwell JA, Tratt DM, Warren DW, Young SJ (2008) Space-based mineral and gas identification using a high-performance thermal infrared imaging spectrometer. SPIE, San Diego

    Google Scholar 

  • Hall JL, Boucher RH, Gutierrez DJ, Hansel SJ, Kasper BP, Keim ER, Moreno NM, Polak ML, Sivjee MG, Tratt DM, Warren DW (2011) First flights of a new airborne thermal infrared imaging spectrometer with high area coverage. SPIE, Orlando

    Google Scholar 

  • Hapke B (1993) Combined theory of reflectance and emittance spectroscopy. In: Pieters CM, Englert PAJ (eds) Topics in remote sensing 4-remote geochemical analysis: elemental and mineralogical composition. Cambridge University Press, Cambridge, pp 31–42

    Google Scholar 

  • Hecker CA (2012) Mapping feldspars from above - a thermal infrared and partial least squares-based approach. Doctorate of Philosophy dissertation, University of Twente, Enschede

    Google Scholar 

  • Hewson RD, Hausknecht P, Cudahy TJ, Huntington JF, Mason P, Hackwell JA, Nikitas J, Okada K (2000) An appraisal of the hyperspectral thermal-infrared SEBASS data recorded from Oatman, Arizona and a comparison of their unmixed results with AVIRIS. Exploration and Mining report 668 F. CSIRO Exploration and Mining, Wembley, Western Australia, p 38

    Google Scholar 

  • Holma H, Hyvarinen T, Lehtomaa J, Karjalainen H, Jaskari R (2009) Advanced pushbroom hyperspectral LWIR imagers. SPIE, Orlando

    Google Scholar 

  • Holma H, Mattila AJ, Hyvarinen T, Weatherbee O (2011) Advances in hyperspectral LWIR pushbroom imagers. SPIE, Orlando

    Google Scholar 

  • Hook SJ, Abbott EA, Grove C, Kahle AB, Palluconi FD (1999) Use of multispectral thermal infrared data in geological studies. In: Rencz AN (ed) Remote sensing for the earth sciences. Wiley, New York, p 3

    Google Scholar 

  • Hook SJ, Myers JJ, Thome KJ, Fitzgerald M, Kahle AB (2001) The MODIS/ASTER airborne simulator (MASTER) – a new instrument for earth science studies. Remote Sens Environ 76(1):93–102

    Article  Google Scholar 

  • Hunt GR (1970) Visible and near-infrared spectra of minerals and rocks: I. Silicate minerals. Mod Geol 1:283–300

    Google Scholar 

  • Hunt GR, Salisbury JW (1974) Mid-infrared spectral behavior of igneous rocks. Environmental research paper. U.S. Air Force Cambridge Research Laboratory, Cambridge

    Google Scholar 

  • Hunt GR, Salisbury JW (1976) Mid-infrared spectral behavior of metamorphic rocks. Environmental research paper. U.S. Air Force Cambridge Research Laboratory, Cambridge

    Google Scholar 

  • Kahle AB (1987) Surface emittance, temperature, and thermal inertia derived from Thermal Infrared Multispectral Scanner (TIMS) data for Death Valley, California. Geophysics 52(7):858–874

    Article  Google Scholar 

  • Kahle AB, Goetz AFH (1983) Mineralogic information from a new airborne thermal infrared multispectral scanner. Science 222:24–27

    Article  Google Scholar 

  • Kahle AB, Rowan LC (1980) Evaluation of multispectral middle infrared aircraft images for lithologic mapping in the East Tintic Mountains, Utah. Geology 8:234–239

    Article  Google Scholar 

  • Kahle AB, Madura DP, Soha JM (1980) Middle infrared multispectral aircraft scanner data: analysis for geological applications. Appl Opt 19(14):2279–2290

    Article  Google Scholar 

  • Kahle AB, Gillespie AR, Abbott EA, Abrams MJ, Walker RE, Hoover G, Lockwood JP (1988) Relative dating of Hawaiian lavea flows using multispectral thermal infrared images: a new tool for geologic mapping of young volcanic terrains. J Geophys Res 93:15239–15251

    Article  Google Scholar 

  • Kealy PS, Hook SJ (1993) Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures. IEEE Trans Geosci Remote Sens 31(6):1155–1164

    Article  Google Scholar 

  • King RL, Ruffin C, LaMastus FE, Shaw DR (1999) The analysis of hyperspectral data using Savitzky-Golay filtering-practical issues. 2. In: Geoscience and remote sensing symposium, 1999. IGARSS ’99 Proceedings. IEEE 1999 International. Hamburg, Germany

    Google Scholar 

  • Kruse FA, Taranik DL (1989) Mapping hydrothermally altered rocks with the airborne imaging spectrometer (AIS) and the airborne visible/infrared imaging spectrometer. In: Geoscience and remote sensing symposium, 1989. IGARSS’89. 12th Canadian symposium on remote sensing, 1989 International. Vancouver, Canada

    Google Scholar 

  • Lucey PG, Williams TJ, Mignard M, Julian J, Kobubun D, Allen G, Hampton D, Schaff W, Schlangen MJ, Winter EM, Kendall WB, Stocker AD, Horton KA, Bowman AP (1998) AHI: an airborne long-wave infrared hyperspectral imager. SPIE, San Diego

    Google Scholar 

  • Lyon RJP (1965) Analysis of rocks by spectral infrared emission (8 to 25 microns). Econ Geol 60(4):715–736

    Article  Google Scholar 

  • Lyon RJP, Burns EA (1963) Analysis of rocks and minerals by reflected infrared radiation. Econ Geol 58(2):274–284

    Article  Google Scholar 

  • Lyon RJP, Tuddenham WM, Thompson CS (1959) Quantitative mineralogy in 30 minutes. Econ Geol 54(6):1047–1055

    Article  Google Scholar 

  • Mauger A (2003) Comparison of various remote sensing and spectral radiometer instruments. MESA J 29:26–29

    Google Scholar 

  • Müller A, Richter R, Habermeyer M, Dech S, Segl K, Kaufmann H (2005) Spectroradiometric requirements for the reflective module of the airborne spectrometer ARES. IEEE Geosci Remote Sens Lett 2(3):329–332

    Article  Google Scholar 

  • Mumin AH, Fleet ME, Longstaffe FJ (1996) Evolution of hydrothermal fluids in the Ashanti gold belt, Ghana; stable isotope geochemistry of carbonates, graphite, and quartz. Econ Geol 91:135–148

    Article  Google Scholar 

  • Pignatti S, Lapenna V, Palombo A, Pascucci S, Pergola N, Cuomo V (2011) An advanced tool of the CNR IMAA EO facilities: overview of the TASI-600 hyperspectral thermal spectrometer. In: 3rd workshop on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS), Lisbon, 6–9 June 2011. Lisbon, Portugal. doi:10.1109/WHISPERS.2011.6080890

  • Riley DN, Cudahy TJ, Hewson RD, Jansing D, Hackwell JA (2007) SEBASS imaging for copper porphyry and skarn deposits, Yerington, NV. In: Proceedings of exploration 07: fifth decennial international conference on mineral exploration, Toronto, Canada

    Google Scholar 

  • Riley DN, Mars JC, Cudahy TJ, Hewson RD (2008) Mineral mapping for copper porphyry exploration using multispectral satellite and hyperspectral airborne sensors. In: Spencer JE, Titley SR (eds) Ores and orogenesis: circum-pacific tectonics, geologic evolution, and ore deposits, Arizona Geological Society Digest 22. Arizona Geological Society, Tuscon, pp 111–125

    Google Scholar 

  • Rowan LC, Mars JC (2003) Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens Environ 84(3):350–366

    Article  Google Scholar 

  • Rowan LC, Hook SJ, Abrams MJ, Mars JC (2003) Mapping hydrothermally altered rocks at Cuprite, Nevada, using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a new satellite-imaging system. Econ Geol 98(5):1019–1027

    Article  Google Scholar 

  • Ruffin C, King RL (1999) The analysis of hyperspectral data using Savitzky-Golay filtering-theoretical basis. 1, Geoscience and remote sensing symposium, 1999. IGARSS ’99 proceedings. IEEE 1999 international, Hamburg, Germany vol 2, pp 756–758, 28 Jun–02 Jul 1999. doi:10.1109/IGARSS.1999.774430

  • Sabine C, Realmuto VJ, Taranik JV (1994) Quantitative estimation of granitoid composition from Thermal Infrared Multispectral Scanner (TIMS) data, Desolation Wilderness, northern Sierra Nevada, California. J Geophys Res 99:4261–4271

    Article  Google Scholar 

  • Salisbury JW, Walter LS, Vergo N, D’Aria DM (1991) Infrared (2.1-25 mm) spectra of minerals. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Salisbury JW, Wald AE, D’Aria DM (1994) Thermal infrared remote sensing of Kirchhoff’s Law: 1. Laboratory measurements. J Geophys Res 99(B6):11897–11911

    Article  Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639

    Article  Google Scholar 

  • Swayze GA (1997) The hydrothermal and structural history of the Cuprite mining district, southwestern Nevada: an integrated geological and geophysical approach. PhD, University of Colorado, Boulder

    Google Scholar 

  • Swayze GA, Clark RN, Kruse FA, Sutley SJ (1992) Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada. In: Summaries of the third annual JPL airborne geoscience workshop. R. O. Green. JPL Publication 92–14. Jet Propulsion Laboratory, Pasadena, California, pp 47–49

    Google Scholar 

  • Tsai F, Philpot W (1998) Derivative analysis of hyperspectral data. Remote Sens Environ 66(1):41–51

    Article  Google Scholar 

  • Vaughan RG, Calvin WM (2005) Mapping weathering and alteration minerals in the Comstock and Geiger Grade areas using visible to thermal infrared airborne remote sensing data. In: Rhoden HN, Steininger RC, Vikre PG (eds) Geological Society of Nevada symposium. Geological Society of Nevada, Reno, pp 1–20

    Google Scholar 

  • Vaughan RG, Calvin WM, Taranik JV (2003) SEBASS hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping. Remote Sens Environ 85(1):48–63

    Article  Google Scholar 

  • Vaughan RG, Hook SJ, Calvin WM, Taranik JV (2005) Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images. Remote Sens Environ 99(1–2):140–158

    Article  Google Scholar 

  • Vincent RK, Rowan LC, Gillespie RE, Knapp C (1975) Thermal-infrared spectra and chemical analyses of twenty-six igneous rock samples. Remote Sens Environ 4:199–209

    Article  Google Scholar 

  • Whitbourn LB, Phillips R, James G, O’Brien MT, Waterworth MD (1990) An airborne multiline CO2 laser system for remote sensing of minerals. J Mod Opt 37(11):1865–1872

    Article  Google Scholar 

  • Young SJ, Johnson BR, Hackwell JA (2002) An in-scene method for atmospheric compensation of thermal hyperspectral data. J Geophys Res 107(D24):4774

    Article  Google Scholar 

  • URL1: http://tes.asu.edu/speclib/index.html

  • URL2: http://speclib.jpl.nasa.gov

  • URL3: http://speclab.cr.usgs.gov

Download references

Acknowledgements

This work was funded by The Aerospace Corporation through internal research and development money to Dean Riley while he was at Aerospace. The authors would also like to thank the anonymous reviewers who helped improve this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean N. Riley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Riley, D.N., Hecker, C.A. (2013). Mineral Mapping with Airborne Hyperspectral Thermal Infrared Remote Sensing at Cuprite, Nevada, USA. In: Kuenzer, C., Dech, S. (eds) Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6639-6_24

Download citation

Publish with us

Policies and ethics