Skip to main content

Application of the Apparent Thermal Inertia Concept for Soil Moisture Estimation in Agricultural Areas

  • Chapter
  • First Online:
Thermal Infrared Remote Sensing

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 17))

Abstract

The objective of this study is to infer information on Soil Moisture Content (SMC) in agricultural areas using daily gradient of brightness temperature and albedo from MODIS AQUA, based on the so-called apparent thermal inertia (ATI) approach. The developed algorithm has been validated over two different test sites in Italy, Emilia Romagna and South Tyrol regions, and one test site in France, the Pyrenees region, where ground truth measurements were available. For the Emilia Romagna and the Pyrenees test sites, the obtained ATI values were well correlated with SMC values. For the South Tyrol test site, due to large heterogeneity in the mountain landscape, the correlation between ATI and SMC was relatively weak. Cloud coverage which reduces the number of available observations and the vegetation cover which decreases the sensitivity of ATI to SMC were the main limitations in all analyzed test sites. This study showed that a combination of data with a frequent revisit time and polar orbiting sensors can alleviate the impact of cloud coverage on the retrieval. In fact, a comparison between ATI derived from MSG (Meteosat Second Generation) SEVIRI (Spinning Enhanced Visible and Infrared Imager) and MODIS indicated a good correlation between the two estimates thus demonstrating the potential of a possible synergy between the two sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albergel C, RĂŒdiger C, Pellarin T, Calvet JC, Fritz F, Froissard F, Suquia D, Petitpa A, Piguet B, Martin E (2008) From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on insitu observations and model simulations. Hydrol Earth Syst Sci 12:1323–1337

    Article  Google Scholar 

  • Atitar M, Sobrino JA, Soria G, Wigneron JP, JimĂ©nez- Muñoz JC, Julien Y, Ruescas AB (2008) Land surface temperature retrieved from SEVIRI/MSG2 data: algorithm and validation. Presentation: EUMETSAT – AMS meteorological satellite conference, EUMETSAT, Darmstadt, 8–12 Sept 2008

    Google Scholar 

  • Bartalis Z, Wagner W, Naeimi V, Hasenauer S, Scipal K, Bonekamp H, Figa J, Anderson C (2007) Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT). Geophys Res Lett 34, L20401. doi:10.1029/2007GL031088

    Article  Google Scholar 

  • Cai G, Xue Y, Hu Y, Wang Y, Guo J, Luo Y, Wu C, Zhong S, Qi S (2007) Soil moisture retrieval from MODIS data in Northern China Plain using thermal inertia model. Int J Remote Sens 28(16):3567–3581

    Article  Google Scholar 

  • Calvet J-C, Fritz N, Froissard F, Suquia D, Petitpa A, Piguet B (2007) In situ soil moisture observations for the CAL/VAL of SMOS: the SMOSMANIA network. In: International geoscience and remote sensing symposium, IGARSS-international geoscience and remote sensing symposium, Barcelona. doi:10.1109/IGARSS.2007.4423019

    Google Scholar 

  • Deneke HM, Roebeling RA, Wolters ELA, Feijt A (2007) Intercomparison of cloud property retrievals from MSG-SEVIRI and MODI. Presentation: EUMETSAT – AMS meteorological satellite conference, EUMETSAT, Amsterdam, 24–28 Sept 2007

    Google Scholar 

  • Dorigo W, Hahn S, Hohensinn R, Paulik C, Wagner W, Drusch M, van Oevelen P (2010) The international soil moisture network-a data hosting facility for in situ soil moisture measurements in support of SMOS cal/val, Geophysical research abstract, vol 12, EGU2010-12063

    Google Scholar 

  • Freitas SC, Trigo IF, Bioucas-Dias JM, Göttsche FM (2010) Quantifying the uncertainty of land surface temperature retrievals from SEVIRI/Meteosat. IEEE Trans Geosci Remote Sens 48(1):523–534

    Article  Google Scholar 

  • Liang S (2000) Narrow to broadband conversions of land surface albedo I algorithm. Remote Sens Environ 76:213–238

    Article  Google Scholar 

  • LSA SAF (2010) The EUMETSAT Satellite Application Facility on Land Surface Analysis (LSA SAF), product user manual land surface albedo, SAF/LAND/MF/PUM_AL/1.5 Issue 1.5, 19 Mar 2010

    Google Scholar 

  • Ma AN, Xue Y (1990) A study of remote sensing information model of soil moisture. In: Proceedings of the 11th Asian conference on remote sensing I. 15–21 Nov, International Academic Publishers, Beijing, pp P-11-1–P-11-5

    Google Scholar 

  • Minacapilli M, Iovino M, Blanda F (2009) High resolution remote estimation of soil surface water content by a thermal inertia approach. J Hydrol 379:229–238

    Article  Google Scholar 

  • Moran MS, Hymer DC, Qi J, Sano EE (2000) Soil moisture evaluation using multi-temporal Synthetic Aperture Radar (SAR) in semiarid rangeland. Agric Forest Meteorol 105:69–80

    Article  Google Scholar 

  • Njoku EG, Jackson TJ, Lakshmi V, Chan TK, Nghiem SV (2003) Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Remote Sens 41(2):215–229

    Article  Google Scholar 

  • Notarnicola C, Caporaso L, Di Giuseppe F, Temimi M, Ventura B, Zebisch M (2012) Inferring soil moisture variability in the Mediterrean Sea area using infrared and passive microwave observations. Can J Remote Sens 38(1):46–59

    Article  Google Scholar 

  • Price JC (1977) Thermal inertia mapping: a new view of the Earth. J Geophys Res 82:2582–2590

    Article  Google Scholar 

  • Scheidt S, Ramsey M, Lancaster N (2010) Determining soil moisture and sediment availability at White Sands Dune Field, NM from apparent thermal inertia. J Geophys Res Earth Surf 115:F02019. doi:10.1029/2009JF001378

    Article  Google Scholar 

  • Tramutoli V, Claps P, Marella M (2001) Hydrological implications of remotely sensed thermal inertia. In: Owe M et al (eds) Remote sensing and hydrology 2000, IAHS publication no. 267. IAHS Press, Wallingford, pp 207–211

    Google Scholar 

  • Van doninck J, Peters J, De Baets B, De Clercq EM, Ducheyne E, Verhoest NEC (2011) The potential of multitemporal Aqua and Terra MODIS apparent thermal inertia as a soil moisture indicator. Int J Appl Earth Obs Geoinf 13(6):934–941

    Article  Google Scholar 

  • Verstaeten WW, Veroustraete F, van der Sande CJ, Grootaers I, Feyen J (2006) Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forest. Remote Sens Environ 101:299–314

    Article  Google Scholar 

  • Wagner W, Lemoine G, Borgeaud M, Rott H (1999) A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens Environ 70:191–207

    Article  Google Scholar 

  • Wagner W, Pathe C, Doubkova M, Sabel D, Bartsch A, Hasenauer S, Blöschl G, Scipal K, MartĂ­nez-FernĂĄndez J, Löw A (2008) Temporal stability of soil moisture and radar backscatter observed by the Advanced Synthetic Aperture Radar (ASAR). Sensors 8:1174–1197

    Article  Google Scholar 

  • Xue Y, Cracknell AP (1995) Advanced thermal inertia modeling. Int J Remote Sens 16:431–446

    Article  Google Scholar 

  • ZakĆĄek K, Schroedter-Homscheidt M (2009) Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments. ISPRS J Photogramm Remote Sens 64:414–421

    Article  Google Scholar 

  • URL1: http://ladsweb.nascom.nasa.gov

  • URL2: http://nsidc.org/data/modis/order_data.html

Download references

Acknowledgements

The authors would like to thank Ing. Giacomo Bertoldi from EURAC-Institute for Alpine Environment for providing SMC data over the South Tyrol region, and Dr. Francesca Digiuseppe from ARPA-Emilia Romagna for providing SMC data over the Emilia Romagna region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Notarnicola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Notarnicola, C., LewiƄska, K.E., Temimi, M., Zebisch, M. (2013). Application of the Apparent Thermal Inertia Concept for Soil Moisture Estimation in Agricultural Areas. In: Kuenzer, C., Dech, S. (eds) Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6639-6_17

Download citation

Publish with us

Policies and ethics