Skip to main content

Time Series Corrections and Analyses in Thermal Remote Sensing

  • Chapter
  • First Online:

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 17))

Abstract

The time span of surface thermal data bases now reaches a few decades. However, studies using surface thermal time series are seldom, due to the difficulty of obtaining temporally coherent estimations for this parameter. Applications for surface thermal multitemporal analysis range from climate change studies and modeling to anomaly detection for natural or industrial hazard detection. This chapter presents methods to improve the temporal coherence of temperature time series, through data reconstruction of atmospheric and cloud contaminated observations, and through the correction of the orbital drift effect which hinders the use of the longest data sets. Then, methods for the analysis of time series are presented, including both image to image comparison and trend detection, the choice between these methods depending on the spatial resolution of the dataset and the aims of the considered study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ackerman S, Strabala K, Menzel W, Frey R, Moeller C, Gumley L (1998) Discriminating clear sky from clouds with MODIS. J Geophys Res 103:32141–32157

    Article  Google Scholar 

  • Adams JB, Sabol DE, Kapos V, Almeida Filho R, Robers DA, Smith MO, Gillespie AR (1995) Classification of multi-spectral images based on fractions of end members: applications to land-cover change in the Brazilian Amazon. Remote Sens Environ 12:137–154

    Article  Google Scholar 

  • Alwashe MA, Bokhari AY (1993) Monitoring vegetation changes in Al Madinah, Saudi Arabia, using Thematic Mapper data. Int J Remote Sens 14:191–197

    Article  Google Scholar 

  • Andres L, Salas WA, Skole D (1994) Fourier analysis of multitemporal AVHRR data applied to a land cover classification. Int J Remote Sens 15:1115–1121

    Article  Google Scholar 

  • Banner A, Lynham T (1981) Multi-temporal analysis of Landsat data for forest cutover mapping – a trial of two procedures. In: Proceedings of the 7th Canadian symposium on remote sensing, Winnipeg, Canada, pp 233–240

    Google Scholar 

  • Barton IJ (1995) Satellite-derived sea surface temperatures: current status. J Geophys Res 100(C5):8777–8790

    Article  Google Scholar 

  • Beck P, Atzberger C, Høgda KA, Johansen B, Skidmore A (2006) Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sens Environ 100:321–334

    Article  Google Scholar 

  • Bertrand R, Lenoir J, Piedallu C, Riofrío-Dillon G, de Ruffray P, Vidal C, Pierrat JC, Gégout JC (2011) Changes in plant community composition lag behind climate warming in lowland forests. Nature. doi:10.1038/nature10548

    Google Scholar 

  • Burns GS, Joyce AT (1981) Evaluation of land cover change detection techniques using Landsat MSS data. In: Proceedings of the 7th PECORA symposium, Sioux Falls, SD. ASPRS, Bethesda, MD, pp 252–260

    Google Scholar 

  • CCSP (Climate Change Science Program) (2006) Strategic plan for the U.S. Climate Change Science Program, chapter 12. In: Observing and monitoring the climate system. http://www.climatescience.gov/Library/stratplan2003/final/ccspstratplan2003-chap12.pdf. Accessed 13 Nov 2012

  • Chen J, Jönsson P, Tamura M, Gu Z, Matsushita B, Eklundh L (2004) A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens Environ 91:332–334

    Article  Google Scholar 

  • Comiso JC (2003) Warming trends in the Arctic from clear sky satellite observations. J Climate 16:3498–3510

    Article  Google Scholar 

  • Coppin P, Jonckheere I, Nackaerts K, Muys B, Lambin E (2004) Digital change detection methods in ecosystem monitoring: a review. Int J Remote Sens 25(9):1565–1596

    Article  Google Scholar 

  • De Beurs KM (2005) A statistical framework for the analysis of long image time series: the effect of anthropogenic change on land surface phenology. PhD dissertation, Faculty of The Graduate College, University of Nebraska

    Google Scholar 

  • De Beurs KM, Henebry GM (2004a) Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan. Remote Sens Environ 89:497–509

    Article  Google Scholar 

  • De Beurs KM, Henebry GM (2004b) Trend analysis of the Pathfinder AVHRR Land (PAL) NDVI data for the deserts of Central Asia. IEEE Geosci Remote Sens Lett 1(4):282–286

    Article  Google Scholar 

  • De Beurs KM, Henebry GM (2005a) A statistical framework for the analysis of long image time series. Int J Remote Sens 26(8):1551–1573

    Article  Google Scholar 

  • De Beurs KM, Henebry GM (2005b) Land surface phenology and temperature variation in the International Geosphere-Biosphere Program high-latitude transects. Glob Chang Biol 11:779–790

    Article  Google Scholar 

  • Derrien M, Le Gléau H (2005) MSG/SEVIRI cloud mask and type from SAFNWC. Int J Remote Sens 26:4707–4732

    Article  Google Scholar 

  • Desclée B, Bogaert P, Defourny P (2006) Forest change detection by statistical object-based method. Remote Sens Environ 102:1–11

    Article  Google Scholar 

  • Deser C, Phillips AS, Alexander MA (2010) Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett 37:L10701. doi:10.1029/2010GL043321

    Article  Google Scholar 

  • Diak GR, Whipple MS (1993) Improvements to models and methods for evaluating the land-surface energy balance and effective roughness using radiosonde reports and satellite-measured skin temperature data. Agr Forest Meteorol 63(3–4):189–218

    Article  Google Scholar 

  • Dietz EJ, Killeen TJ (1981) A nonparametric multivariate test for monotone trend with pharmaceutical applications. J Am Stat Assoc 76:169–174

    Google Scholar 

  • Eastman JR, Fulk M (1993) Long sequence time series evaluation using standardized principal components. Photogramm Eng Remote Sens 59:991–996

    Google Scholar 

  • French AN, Schmugge TJ, Ritchie JC, Hsu A, Jacob F, Ogawa K (2008) Detecting land cover change at the Jornada Experimental Range, New Mexico with ASTER emissivities. Remote Sens Environ 112:1730–1748

    Article  Google Scholar 

  • Frey CM, Kuenzer C, Dech S (2012) Quantitative comparison of the operational NOAA-AVHRR LST product of DLR and the MODIS LST product V005. Int J Remote Sens 33(22):7165–7183

    Article  Google Scholar 

  • Gillespie A, Rokugawa S, Matsunaga T, Cothern JS, Hook S, Kahle AB (1998) A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans Geosci Remote Sens 36(4):1113–1126

    Article  Google Scholar 

  • Gleason ACR, Prince SD, Goetz SJ, Small J (2002) Effects of orbital drift on land surface temperature measured by AVHRR thermal sensors. Remote Sens Environ 79:147–165

    Article  Google Scholar 

  • Gutman GG (1999) On the monitoring of land surface temperature with the NOAA/AVHRR: removing the effect of satellite orbit drift. Int J Remote Sens 20(17):3407–3413

    Article  Google Scholar 

  • Hird JN, McDermid GJ (2009) Noise reduction of NDVI time series: an empirical comparison of selected techniques. Remote Sens Environ 113:248–258

    Article  Google Scholar 

  • Hirsch RM, Slack JR (1984) A nonparametric trend test for seasonal data with serial dependence. Water Resour Res 20:727–732

    Article  Google Scholar 

  • Hoeffding W (1948) A class of statistics with asymptotically normal distribution. Ann Math Stat 19:293–325

    Article  Google Scholar 

  • Holben BN (1986) Characteristics of maximum-value composite image from temporal AVHRR data. Int J Remote Sens 7:1417–1434

    Article  Google Scholar 

  • Hou TY, Shi Z (2011) Adaptative data analysis via sparse time-frequency representations. Adv Adapt Data Anal 3(1&2):1–28

    Article  Google Scholar 

  • Howarth PJ, Wickware GM (1981) Procedures for change detection using Landsat. Int J Remote Sens 2:277–291

    Article  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1–2):195–213

    Article  Google Scholar 

  • Ignatov A, Laszlo I, Harrod ED, Kidwell KB, Goodrum GP (2004) Equator crossing times for NOAA, ERS and EOS sun-synchronous satellites. Int J Remote Sens 25(23):5255–5266

    Article  Google Scholar 

  • IPCC (2007) In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation, and vulnerability, contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jiménez-Muñoz JC, Sobrino JA (2008) Split-window coefficients for land surface temperature retrieval from low-resolution thermal infrared sensors. IEEE Geosci Remote Sens Lett 5(4):806–809

    Article  Google Scholar 

  • Jin M, Dickinson RE (2000) A Generalized algorithm for retrieving cloudy sky skin temperature from satellite thermal infrared radiances. J Geophys Res D22:27037–27047

    Article  Google Scholar 

  • Jin M, Treadon RE (2003) Correcting the orbit drift effect on AVHRR land surface skin temperature measurements. Int J Remote Sens 24(22):4543–4558

    Article  Google Scholar 

  • Jönsson P, Eklundh L (2002) Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans Geosci Remote Sens 40:1824–1832

    Article  Google Scholar 

  • Jönsson P, Eklundh L (2004) TIMESAT – a program for analyzing time-series of satellite sensor data. Comput Geosci 30:833–845

    Article  Google Scholar 

  • Julien Y, Sobrino JA (2009) Global land surface phenology trends from GIMMS database. Int J Remote Sens 30(13):3495–3513

    Article  Google Scholar 

  • Julien Y, Sobrino JA (2010) Comparison of cloud-reconstruction methods for time series of composite NDVI data. Remote Sens Environ 114:618–625

    Article  Google Scholar 

  • Julien Y, Sobrino JA (2012) Correcting long term data record V3 estimated LST from orbital drift effects. Remote Sens Environ 123:207–219

    Article  Google Scholar 

  • Julien Y, Sobrino JA, Verhoef W (2006) Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sens Environ 103:43–55

    Article  Google Scholar 

  • Karnieli A, Agam N, Pinker RT, Anderson M, Imhoff ML, Gutman GG, Panov N, Goldberg A (2010) Use of NDVI and land surface temperature for drought assessment: merits and limitations. J Climate 23(3):618–663

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Charles Griffin, London

    Google Scholar 

  • Kuenzer C, Zhang J, Li J, Voigt S, Mehl H, Wagner W (2007) Detecting unknown coal fires: synergy of automated coal fire risk area delineation and improved thermal anomaly extraction. Int J Remote Sens 28(20):4561–4585

    Article  Google Scholar 

  • Kuenzer C, Hecker C, Zhang J, Wessling S, Wagner W (2008) The potential of multidiurnal MODIS thermal band data for coal fire detection. Int J Remote Sens 29(3):923–944

    Article  Google Scholar 

  • Lagouarde JP, Kerr YH, Brunet Y (1995) An experimental study of angular effects on surface temperature for various plant canopies and bare soils. Agr Forest Meteorol 77:167–190

    Article  Google Scholar 

  • Lambin EF, Ehrlich D (1996) The surface temperature-vegetation index space for land cover and land-cover change analysis. Int J Remote Sens 17:463–487

    Article  Google Scholar 

  • Lambin EF, Ehrlich D (1997) Land-cover changes in sub-Saharan Africa (1982–1991): application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale. Remote Sens Environ 61:181–200

    Article  Google Scholar 

  • Lambin EF, Strahler AH (1994) Change-vector analysis in multitemporal space: a tool to detect and categorize land-cover change processes using high temporal-resolution satellite data. Remote Sens Environ 48:231–244

    Article  Google Scholar 

  • Libiseller C, Grimvall A (2002) Performance of partial Mann-Kendall test for trend detection in the presence of covariates. Environmetrics 13:71–84

    Article  Google Scholar 

  • Lyon GJ, Yuan D, Lunetta RS, Elvidge CD (1998) A change detection experiment using vegetation indices. Photogramm Eng Remote Sens 64:143–150

    Google Scholar 

  • Ma M, Veroustraete F (2006) Reconstructing pathfinder AVHRR land NDVI timeseries data for the Northwest of China. Adv Space Res 37:835–840

    Article  Google Scholar 

  • Mann HB (1945) Non-parametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Menenti M, Azzali S, Verhoef W, van Swol R (1993) Mapping agro-ecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images. Adv Space Res 13:233–237

    Article  Google Scholar 

  • Menglin J, Liang S (2006) An improved land surface emissivity parameter for land surface models using global remote sensing observations. J Climate 19:2867–2881

    Article  Google Scholar 

  • More JJ (1977) The Levenberg-Marquardt algorithm: implementation and theory. In: Watson GA (ed) Numerical analysis, Lecture notes in mathematics 630. Springer, New York

    Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386(6626):698

    Article  Google Scholar 

  • Nelson RF (1983) Detecting forest canopy change due to insect activity using Landsat MSS. Photogramm Eng Remote Sens 49:1303–1314

    Google Scholar 

  • Ogawa K, Schmugge T, Rokugawa S (2008) Estimating broadband emissivity of arid regions and its seasonal variations using thermal infrared remote sensing. Trans Geosci Remote Sens 46(2):334–343

    Article  Google Scholar 

  • Pinheiro ACT, Privette JL, Mahoney R, Tucker CJ (2004) Directional effects in a daily AVHRR land surface temperature dataset over Africa. IEEE Trans Geosci Remote Sens 42(9):1941–1954

    Article  Google Scholar 

  • Pinheiro ACT, Mahoney R, Privette JL, Tucker CJ (2006) Development of a daily long term record of NOAA-14 AVHRR land surface temperature over Africa. Remote Sens Environ 103:153–164

    Article  Google Scholar 

  • Pinzon J, Brown ME, Tucker CJ (2005) Satellite time series correction of orbital drift artifacts using empirical mode decomposition. In: Huang NE, Shen SSP (eds) EMD and its applications, vol 10. World Scientific, Singapore, pp 285–295

    Google Scholar 

  • Plisnier PD, Serneels S, Lambin EF (2000) Impact of ENSO on East African ecosystems: multivariate analysis based on climatologic and remote sensing data. Glob Ecol Biogeogr Lett 9:481–497

    Article  Google Scholar 

  • Price JC (1991) Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans Geosci Remote Sens 28:940–948

    Article  Google Scholar 

  • Prins EM, McNamara D, Schmidt CC (2004) Global geostationary fire monitoring system. In: AMS 13th satellite meteorology and oceanography conference, Norfolk, VA, 20–24 Sept 2004

    Google Scholar 

  • Ridd MK, Liu J (1998) A comparison of four algorithms for change detection in an urban environment. Remote Sens Environ 63:95–100

    Article  Google Scholar 

  • Roberts DA, Batista GT, Pereira J, Waller EK, Nelson BW (1998) Change identification using multitemporal spectral mixture analysis: applications in eastern Amazonia. In: Elvidge C, Lunetta R (eds) Remote sensing change detection: environmental monitoring applications and methods. Ann Arbor Press, Chelsea, pp 137–161

    Google Scholar 

  • Roerink GJ, Menenti M, Verhoef W (2000) Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int J Remote Sens 21(9):1911–1917

    Article  Google Scholar 

  • Saunders RW, Kriebel KT (1988) An improved method for detecting clear sky and cloudy radiances from AVHRR dats. Int J Remote Sens 9:123–150

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Singh A (1989) Digital change detection techniques using remotely-sensed data. Int J Remote Sens 10:989–1003

    Article  Google Scholar 

  • Smith PM, Kalluri SNV, Prince SD, Defries R (1997) The NOAA/NASA pathfinder AVHRR 8-km land data set. Photogramm Eng Remote Sens 63(1):12–31

    Google Scholar 

  • Sobrino JA, Romaguera M (2004) Land surface temperature retrieval from MSG1-SEVIRI data. Remote Sens Environ 92:247–254

    Article  Google Scholar 

  • Sobrino JA, Jiménez-Muñoz JC, Sòria G, Romaguera M, Guanter L, Moreno J, Plaza A, Martínez P (2008a) Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Trans Geosci Remote Sens 46(2):316–327

    Article  Google Scholar 

  • Sobrino JA, Julien Y, Atitar M, Nerry F (2008b) NOAA-AVHRR orbital drift correction from solar zenithal angle data. IEEE Trans Geosci Remote Sens 46(12):4014–4019

    Article  Google Scholar 

  • Tanré D, Herman M, Deschamps PY (1983) Influence of the atmosphere on space measurements of directional properties. Appl Opt 22:733–741

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • Tucker CJ, Pinzon JE, Brown ME, Slayback DA, Pak EW, Mahoney R, Vermote EF, El Saleous N (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26(20):4485–4498

    Article  Google Scholar 

  • van Dijk A, Callis S, Sakamoto C, Decker W (1987) Smoothing vegetation index profiles: an alternative method for reducing radiometric disturbance in NOAA/AVHRR data. Photogramm Eng Remote Sens 53:1059–1067

    Google Scholar 

  • Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010) Detecting trend and seasonal changes in satellite image time series. Remote Sens Environ 114:106–115. doi:10.1016/j.rse.2009.08.014

    Article  Google Scholar 

  • Verhoef W, Menenti M, Azzali S (1996) A colour composite of NOAA-AVHRR-NDVI based on time series analysis (1981–1992). Int J Remote Sens 17(2):231–235

    Article  Google Scholar 

  • Viovy N, Arino O, Velward A (1992) The Best Index Slope Extraction (BISE): a method for reducing noise in NDVI time-series. Int J Remote Sens 13:1585–1590

    Article  Google Scholar 

  • Wilson EH, Sader SA (2002) Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens Environ 80:385–396

    Article  Google Scholar 

  • Young SS, Wang CY (2001) Land-cover change analysis of China using globalscale Pathfinder AVHRR Landover (PAL) data, 1982–92. Int J Remote Sens 22:1457–1477

    Google Scholar 

  • URL1: http://www.wmo.int/pages/prog/gcos/index.php?name=EssentialClimateVariables

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Sobrino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sobrino, J.A., Julien, Y. (2013). Time Series Corrections and Analyses in Thermal Remote Sensing. In: Kuenzer, C., Dech, S. (eds) Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6639-6_14

Download citation

Publish with us

Policies and ethics